Density, distribution function, quantile function and random generation for the reversal power normal distribution with parameters mu, sigma and lambda.
drpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)prpnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrpnorm(n, lambda = 1, mu = 0, sigma = 1)
vector of quantiles.
shape parameter.
location and scale parameters.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
vector of probabilities.
number of observations.
The reversal power Normal distribution has density
\(f(x)=\lambda \left [ \Phi \left ( -\frac{x-\mu}{\sigma} \right ) \right ]^{\lambda - 1} \left[\frac{e^{ -\frac{1}{2}\left ( \frac{x-\mu}{\sigma} \right )^2}}{\sigma\sqrt{2\pi}} \right]\),
where \(-\infty<\mu<\infty\) is the location paramether, \(\sigma^2>0\) the scale parameter and \(\lambda>0\) the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de S<U+00E3>o Paulo - Universidade Federal de S<U+00E3>o Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Baz<U+00E1>n, J. L., Torres -Avil<U+00E9>s, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Baz<U+00E1>n, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467<U+2013>482.
# NOT RUN {
drpnorm(1, 1, 3, 4)
prpnorm(1, 1, 3, 4)
qrpnorm(0.2, 1, 3, 4)
rrpnorm(5, 2, 3, 4)
# }
Run the code above in your browser using DataLab