powered by
Density, distribution function, quantile function and random generation for the power reversal Student t distribution with parameters mu, sigma, lambda and df.
drpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE)prpt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE)qrpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE)rrpt(n, lambda = 1, mu = 0, sigma = 1, df)
prpt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE)
qrpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE)
rrpt(n, lambda = 1, mu = 0, sigma = 1, df)
vector of quantiles.
shape parameter.
location and scale parameters.
degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
vector of probabilities.
number of observations.
The reversal power Student t distribution has density
\(f(x)=[\lambda/\sigma][f((x-\mu)/\sigma)][F((x-\mu)/\sigma)] ^(\lambda-1)\),
where \(-\infty<\mu<\infty\) is the location paramether, \(\sigma^2>0\) the scale parameter and \(\lambda>0\) the shape parameter.
# NOT RUN { drpt(1, 1, 3, 4, 1) prpt(1, 1, 3, 4, 1) qrpt(0.2, 1, 3, 4, 1) rrpt(5, 2, 3, 4, 1) # }
Run the code above in your browser using DataLab