Learn R Programming

power.transform (version 1.0.3)

Location and Scale Invariant Power Transformations

Description

Location- and scale-invariant Box-Cox and Yeo-Johnson power transformations allow for transforming variables with distributions distant from 0 to normality. Transformers are implemented as S4 objects. These allow for transforming new instances to normality after optimising fitting parameters on other data. A test for central normality allows for rejecting transformations that fail to produce a suitably normal distribution, independent of sample number.

Copy Link

Version

Install

install.packages('power.transform')

Monthly Downloads

383

Version

1.0.3

License

EUPL

Issues

Pull Requests

Stars

Forks

Maintainer

Alex Zwanenburg

Last Published

January 15th, 2026

Functions in power.transform (1.0.3)

transformationYeoJohnson-class

Yeo-Johnson transformation object
revert_power_transform

Revert transformation
ragn

Random Values from the Asymmetric Generalised Normal Distribution
set_lambda

Set lambda value
plot_residual_plot

Create residual plot
get_lambda

Get lambda value
create_transformer_skeleton

Create transformation object skeleton
get_residuals

Compute residuals of transformation to normality
plot_qq_plot

Create Q-Q plot
find_transformation_parameters

Set transformation parameters
ecn_test

Empirical central normality test
huber_estimate

Huber M-estimate
assess_transformation

Assess normality of transformed data
get_transformation_method

Get transformation method
get_scale

Get scale value
set_scale

Set scale value
transformationNone-class

No transformation object
get_shift

Get shift value
power_transform

Transform values
set_shift

Set shift value
power.transform

power.transform: Transform Data to Normality using Power Transformations
transformationBoxCox-class

Box-Cox transformation object
transformationPowerTransform-class

Generic transformation object