Learn R Programming

powerMediation (version 0.2.3)

powerLong.multiTime: Power calculation for testing if mean changes for 2 groups are the same or not for longitudinal study with more than 2 time points

Description

Power calculation for testing if mean changes for 2 groups are the same or not for longitudinal study with more than 2 time points.

Usage

powerLong.multiTime(es, m, nn, sx2, rho = 0.5, alpha = 0.05)

Arguments

es
effect size
m
number of subjects
nn
number of observations per subject
sx2
within subject variance
rho
within subject correlation
alpha
type I error rate

Value

  • power

Details

We are interested in comparing the slopes of the 2 groups $A$ and $B$: $$\beta_{1A} = \beta_{1B}$$ where $$Y_{ijA}=\beta_{0A}+\beta_{1A} x_{jA} + \epsilon_{ijA}, j=1, \ldots, nn; i=1, \ldots, m$$ and $$Y_{ijB}=\beta_{0B}+\beta_{1B} x_{jB} + \epsilon_{ijB}, j=1, \ldots, nn; i=1, \ldots, m$$

The power calculation formula is (Equation on page 30 of Diggle et al. (1994)): $$power=\Phi\left[ -z_{1-\alpha} + \sqrt{\frac{m nn s_x^2 es^2}{2(1-\rho)}} \right]$$ where $es=d/\sigma$, $d$ is the meaninful differnce of interest, $sigma^2$ is the variance of the random error, $\rho$ is the within-subject correlation, and $s_x^2$ is the within-subject variance.

References

Diggle PJ, Liang KY, and Zeger SL (1994). Analysis of Longitundinal Data. page 30. Clarendon Press, Oxford

See Also

ssLong.multiTime

Examples

Run this code
# power=0.8
  powerLong.multiTime(es=0.5/10, m=196, nn=3, sx2=4.22, rho = 0.5, alpha = 0.05)

Run the code above in your browser using DataLab