power for testing if \(\lambda=0\) for the simple linear regression
\(y_i=\gamma+\lambda x_i + \epsilon_i, \epsilon_i\sim N(0, \sigma_{e}^2).\)
sigma.x
standard deviation of the predictor \(sd(x)=\sigma_x\).
sigma.y
marginal standard deviation of the outcome \(sd(y)=\sigma_y\).
(not the conditional standard deviation \(sd(y|x)\))
alpha
type I error rate.
verbose
logical. TRUE means printing minimum absolute detectable effect; FALSE means not printing minimum absolute detectable effect.
Value
lambda.a
minimum absolute detectable effect.
res.uniroot
results of optimization to find the optimal minimum absolute detectable effect.
Details
The test is for testing the null hypothesis \(\lambda=0\)
versus the alternative hypothesis \(\lambda\neq 0\)
for the simple linear regressions:
$$y_i=\gamma+\lambda x_i + \epsilon_i, \epsilon_i\sim N(0, \sigma^2_{e})$$
References
Dupont, W.D. and Plummer, W.D..
Power and Sample Size Calculations for Studies Involving Linear Regression.
Controlled Clinical Trials. 1998;19:589-601.