power for testing if \(\lambda=0\) for the simple linear regression
\(y_i=\gamma+\lambda x_i + \epsilon_i, \epsilon_i\sim N(0, \sigma_{e}^2).\)
lambda.a
regression coefficient in the simple linear regression
\(y_i=\gamma+\lambda x_i + \epsilon_i, \epsilon_i\sim N(0, \sigma_{e}^2).\)
sigma.x
standard deviation of the predictor \(sd(x)\).
sigma.y
marginal standard deviation of the outcome \(sd(y)\).
(not the marginal standard deviation \(sd(y|x)\))
n.lower
lower bound for the sample size.
n.upper
upper bound for the sample size.
alpha
type I error rate.
verbose
logical. TRUE means printing sample size; FALSE means not printing sample size.
Value
n
sample size.
res.uniroot
results of optimization to find the optimal sample size.
Details
The test is for testing the null hypothesis \(\lambda=0\)
versus the alternative hypothesis \(\lambda\neq 0\)
for the simple linear regressions:
$$y_i=\gamma+\lambda x_i + \epsilon_i, \epsilon_i\sim N(0, \sigma^2_{e})$$
References
Dupont, W.D. and Plummer, W.D..
Power and Sample Size Calculations for Studies Involving Linear Regression.
Controlled Clinical Trials. 1998;19:589-601.