computeSampleSize(n, X, Y, A, alpha, beta,
nperm, Nsim, seed, test = 'R2',...)
Value
Returns a data frame that contains the estimated power for each
sample size and number of components considered
Arguments
n
Vector of sample sizes to consider
X
Data matrix where columns represent the \(p\) variables and
rows the \(n\) observations.
Y
Data matrix where columns represent the two classes and
rows the \(n\) observations.
A
Number of score components
alpha
Type I error level. Default to 0.05
beta
Type II error level. Default to 0.2.
nperm
Number of permutations. Default to 100.
Nsim
Number of simulations. Default to 100.
seed
Seed value
test
Type of test, one of c('score', 'mcc', 'R2').
Default to 'R2'.
...
Further parameters.
Author
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.