raw p-value. It equals NA if randomization = FALSE
pv_adj
adjusted p-value. It equals NA if randomization = FALSE
test
estimated test statistic
Arguments
X
data matrix where columns represent the \(p\) variables and
rows the \(n\) observations.
Y
data matrix where columns represent the two classes and
rows the \(n\) observations.
nperm
number of permutations. Default to 200.
A
number of score components
randomization
Boolean value. Default to FALSE. If TRUE the permutation p-value is computed
Y.prob
Boolean value. Default FALSE. IF TRUEY is a probability vector
eps
Default 0.01. eps is used when Y.prob = FALSE to transform Y in a probability vector
scaling
Type of scaling, one of
c('auto-scaling', 'pareto-scaling', 'mean-centering'). Default 'auto-scaling'.
post.transformation
Boolean value. TRUE if you want to apply post transformation. Default TRUE
cross.validation
Boolean value. Default FALSE. TRUE if you want to compute the observed test statistic by Nested cross-validation
seed
Seed value
...
additional arguments related to cross.validation. See repeatedCV_test
Author
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, R2Test,
sensitivityTest, specificityTest,AUCTest, dQ2Test,
FMTest, F1Test.