Learn R Programming

ppclust (version 1.1.0.1)

Probabilistic and Possibilistic Cluster Analysis

Description

Partitioning clustering divides the objects in a data set into non-overlapping subsets or clusters by using the prototype-based probabilistic and possibilistic clustering algorithms. This package covers a set of the functions for Fuzzy C-Means (Bezdek, 1974) , Possibilistic C-Means (Krishnapuram & Keller, 1993) , Possibilistic Fuzzy C-Means (Pal et al, 2005) , Possibilistic Clustering Algorithm (Yang et al, 2006) , Possibilistic C-Means with Repulsion (Wachs et al, 2006) and the other variants of hard and soft clustering algorithms. The cluster prototypes and membership matrices required by these partitioning algorithms are initialized with different initialization techniques that are available in the package 'inaparc'. As the distance metrics, not only the Euclidean distance but also a set of the commonly used distance metrics are available to use with some of the algorithms in the package.

Copy Link

Version

Install

install.packages('ppclust')

Monthly Downloads

510

Version

1.1.0.1

License

GPL (>= 2)

Maintainer

Zeynel Cebeci

Last Published

December 13th, 2023

Functions in ppclust (1.1.0.1)

fcm2

Type-2 Fuzzy C-Means Clustering
gk

Gustafson-Kessel Clustering
pca

Possibilistic Clustering Algorithm
pcm

Possibilistic C-Means Clustering
mfpcm

Modified Fuzzy Possibilistic C-Means Clustering
hcm

Hard C-Means Clustering
gkpfcm

Gustafson-Kessel Clustering Using PFCM
pcmr

Possibilistic C-Means Clustering with Repulsion
ppclust-package

Probabilistic and Possibilistic Cluster Analysis
is.ppclust

Check the class of object for ‘ppclust’
summary.ppclust

Summarize the clustering results
plotcluster

Plot Clustering Results
pfcm

Possibilistic Fuzzy C-Means Clustering Algorithm
upfc

Unsupervised Possibilistic Fuzzy C-Means Clustering Algorithm
x12

Synthetic data set of two variables
ppclust2

Convert ‘ppclust’ objects to the other types of cluster objects
x16

Synthetic data set of two variables forming two clusters
get.dmetrics

List the names of distance metrics
as.ppclust

Convert object to ‘ppclust’ class
crisp

Crisp the fuzzy membership degrees
comp.omega

Compute the possibilistic penalty argument for PCM
fpcm

Fuzzy Possibilistic C-Means Clustering
fcm

Fuzzy C-Means Clustering
gg

Gath-Geva Clustering Algorithm
ekm

K-Means Clustering Using Different Seeding Techniques
fpppcm

Fuzzy Possibilistic Product Partition C-Means Clustering