Selects the number of groups with Integrated Classification Likelihood Criterion
modelSelection_Q(data, n, Qmin = 1, Qmax, directed = TRUE, sparse = FALSE,
sol.hist.sauv)
List with 2 components:
$Time - [0,data$Time] is the total time interval of observation
$Nijk - data matrix with the statistics per process
Total number of nodes
Minimum number of groups
Maximum number of groups
Boolean for directed (TRUE) or undirected (FALSE) case
Boolean for sparse (TRUE) or not sparse (FALSE) case
List of size Qmax-Qmin+1 obtained from running mainVEM(data,n,Qmin,Qmax,method='hist')
BIERNACKI, C., CELEUX, G. & GOVAERT, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Machine Intel. 22, 719–725.
CORNELI, M., LATOUCHE, P. & ROSSI, F. (2016). Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing 192, 81 – 91.
DAUDIN, J.-J., PICARD, F. & ROBIN, S. (2008). A mixture model for random graphs. Statist. Comput. 18, 173–183.
MATIAS, C., REBAFKA, T. & VILLERS, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika.
# load data of a synthetic graph with 50 individuals and 3 clusters
n <- 50
# compute data matrix with precision d_max=3
Dmax <- 2^3
data <- list(Nijk=statistics(generated_Q3$data,n,Dmax,directed=FALSE),
Time=generated_Q3$data$Time)
# ICL-model selection
sol.selec_Q <- modelSelection_Q(data,n,Qmin=1,Qmax=4,directed=FALSE,
sparse=FALSE,generated_sol_hist)
# best number Q of clusters:
sol.selec_Q$Qbest
Run the code above in your browser using DataLab