Some of these realizations are the result of courses on Scientific Computing (``Wissenschaftliches Rechnen'') and are mostly intended to demonstrate how to implement certain algorithms in R/S.
Arndt, J. (2010). Matters Computational: Ideas, Algorithms, Source Code.
Springer-Verlag, Berlin Heidelberg Dordrecht.
FXT: a library of algorithms:
Cormen, Th. H., Ch. E. Leiserson, and R. L. Rivest (2009). Introduction to Algorithms. Third Edition, The MIT Press, Cambridge, MA.
Gentle, J. E. (2009). Computational Statistics. Springer Science+Business Media LCC, New York.
Hazewinkel, M., Editor (2002). Encyclopaedia of Mathematics.
Springer-Verlag, Berlin Heidelberg New York.
MathWorld.com (2011).
Matlab Central:
NIST: National Institute of Standards and Technology.
Olver, F. W. J., et al. (2010). NIST Handbook of Mathematical Functions.
Cambridge University Press.
Internet: NIST Digital Library of Mathematical Functions,
Press, W. H., S. A. Teukolsky, W. T Vetterling, and B. P. Flannery (2007).
Numerical Recipes: The Art of Numerical Computing. Third Edition, incl.
Numerical Recipes Software, Cambridge University Press, New York.
Quarteroni, A., and F. Saleri (2006). Scientific Computing with Matlab and Octave. Second Edition, Springer-Verlag, Berlin Heidelberg.
Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical Mathematics. Second Edition, Springer-Verlag, Berlin Heidelberg.
Skiena, St. S. (2008). The Algorithm Design Manual. Second Edition,
Springer-Verlag, London. The Stony Brook Algorithm Repository:
Stoer, J., and R. Bulirsch (2002). Introduction to Numerical Analysis. Third Edition, Springer-Verlag, New York.
Strang, G. (2007). Computational Science and Engineering.
Wellesley-Cambridge Press.
Matlab Codes:
Weisstein, E. W. (2003). CRC Concise Encyclopedia of Mathematics.
Second Edition, Chapman & Hall/CRC Press.
Wolfram MathWorld:
tail(primes(1e7)) # the last 5 prime numbers below 10,000,000 .
Run the code above in your browser using DataLab