quadgr(f, a, b, tol = .Machine$double.eps^(1/2), ...)
f
.value
and rel.err
.quadgr
uses a 12-point Gauss-Legendre quadrature.
The error estimate is based on successive interval bisection. Richardson
extrapolation accelerates the convergence for some integrals, especially
integrals with endpoint singularities.Through some preprocessing infinite intervals can also be handled.
gaussLegendre
## Dilogarithm function
flog <- function(t) log(1-t)/t
quadgr(flog, 1, 0, tol = 1e-12)
# value
# 1.6449340668482 , is pi^2/6 = 1.64493406684823
# rel.err
# 2.07167616395054e-13
Run the code above in your browser using DataLab