quadinf(f, xa, xb, tol = 1e-12, ...)
f
.Q
the integral value, relerr
the relative error, and niter
the number of iterations.quadinf
implements the `double exponential method' for fast
numerical integration of smooth real functions on finite intervals.
For infinite intervals, the tanh-sinh quadrature scheme is applied,
that is the transformation g(t)=tanh(pi/2*sinh(t))
.Please note that this algorithm does work very accurately for `normal' function, but should not be applied to (heavily) oscillating functions. The maximal number of iterations is 7, so if this is returned the iteration may not have converged.
The integrand function needs not be vectorized.
integrate
, quadgk
## We will look at the error function exp(-x^2)
f <- function(x) exp(-x^2) # sqrt(pi)/2 theory
quadinf(f, 0, Inf) # 0.8862269254527413
quadinf(f, -Inf, 0) # 0.8862269254527413
f = function(x) sqrt(x) * exp(-x) # 0.8862269254527579 exact
quadinf(f, 0, Inf) # 0.8862269254527579
f = function(x) x * exp(-x^2) # 1/2
quadinf(f, 0, Inf) # 0.5
f = function(x) 1 / (1+x^2) # 3.141592653589793 = pi
quadinf(f, -Inf, Inf) # 3.141592653589784
Run the code above in your browser using DataLab