## load gene expression data for colon cancer data, list of genes related to RAS signaling pathway and the corresponding priors
data(expO.colon.ras)
## create matrix of perturbations (no perturbations in this dataset)
pert <- matrix(0, nrow=nrow(data.ras), ncol=ncol(data.ras), dimnames=dimnames(data.ras))
## number of genes to select for the analysis
genen <- 10
## select only the top genes
goi <- dimnames(annot.ras)[[1]][order(abs(log2(annot.ras[ ,"fold.change"])), decreasing=TRUE)[1:genen]]
mydata <- data.ras[ , goi, drop=FALSE]
myannot <- annot.ras[goi, , drop=FALSE]
mypriors <- priors.ras[goi, goi, drop=FALSE]
mydemo <- demo.ras
mypert <- pert[ , goi, drop=FALSE]
########################
## regression-based network inference
########################
## infer global network from data and priors
mynet <- netinf(data=mydata, perturbations=mypert, priors=mypriors, priors.count=TRUE, priors.weight=0.5, maxparents=3, method="regrnet", seed)
net2pred(net=mynet, data=mydata, method="linear")
Run the code above in your browser using DataLab