Learn R Programming

preference (version 1.1.6)

preference: Fit Preference Data Collected from a Two-stage Clinical Trial

Description

The variables in the formula should reference columns in the data parameter and should have the following characteristics.

  • outcome: Numeric values giving the outcome of interest.

  • treatment: Character, categorical, or integer values denoting the treatment received by an individual.

  • random: Logical value indicating whether the sample was from the random arm (TRUE) or choice (FALSE).

  • strata: An optional integer value denoting which strata individuals belong to.

Usage

preference(form, data, alpha = 0.05)

Arguments

form

a formula of the form outcome ~ treatment:arm {| strata}.

data

a data.frame containing variables specified in the formula. It should be noted that the arm values must be either "choice" or "random".

alpha

(optional numeric) Level of significance (default 0.05)

Examples

Run this code
# NOT RUN {
# Unstratified

outcome <- c(10, 8, 6, 10, 5, 8, 7, 6, 10, 12, 11, 6, 8, 10, 5, 7, 9, 
             12, 6, 8, 9, 10, 7, 8, 11)
arm <- c(rep("choice", 13), rep("random", 12))
treatment <- c(rep(1, 5), rep(2, 8), rep(1, 6), rep(2, 6))
d <- data.frame(outcome=outcome, treatment=treatment, arm=arm)
preference(outcome ~ treatment:arm, d)

# Stratified
random <- c(rep(FALSE, 13), rep(TRUE, 12))
treatment <- c(rep(1, 5), rep(2, 8), rep(1, 6), rep(2, 6))
strata <- c(1,1,2,2,2,1,1,1,1,2,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2)
d <- data.frame(outcome=outcome, treatment=treatment, arm=arm, 
                strata=strata)
preference(outcome ~ treatment:arm|strata, d, alpha=0.1)

# }

Run the code above in your browser using DataLab