normalize.quantiles.in.blocks(x,blocks,copy=TRUE)
normalize.quantiles.use.target
a normalized matrix
.
rma
or expresso
please cite Bolstad et al, Bioinformatics (2003).Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html
normalize.quantiles
### setup the data
blocks <- c(rep(1,5),rep(2,5),rep(3,5))
par(mfrow=c(3,2))
x <- matrix(c(rexp(5,0.05),rnorm(5),rnorm(5,10)))
boxplot(x ~ blocks)
y <- matrix(c(-rexp(5,0.05),rnorm(5,10),rnorm(5)))
boxplot(y ~ blocks)
pre.norm <- cbind(x,y)
### the in.blocks version
post.norm <- normalize.quantiles.in.blocks(pre.norm,blocks)
boxplot(post.norm[,1] ~ blocks)
boxplot(post.norm[,2] ~ blocks)
### the usual version
post.norm <- normalize.quantiles(pre.norm)
boxplot(post.norm[,1] ~ blocks)
boxplot(post.norm[,2] ~ blocks)
Run the code above in your browser using DataLab