normalize.quantiles.use.target(x,target,copy=TRUE,subset=NULL) normalize.quantiles.determine.target(x,target.length=NULL,subset=NULL)
NULL
then this will be taken to be
equal to the number of rows in the matrix.normalize.quantiles.use.target
a normalized matrix
.
rma
or expresso
please cite Bolstad et al, Bioinformatics (2003).These functions will handle missing data (ie NA values), based on the assumption that the data is missing at random.
Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html
normalize.quantiles