Learn R Programming

priorsense (version 1.1.0)

powerscale_derivative: Derivative with respect to power-scaling

Description

Calculate the analytical derivative of a quantity with respect to power-scaling prior or likelihood.

Usage

powerscale_derivative(x, log_component, quantity = "mean", ...)

Value

Derivative of the quantity with respect to log2 of the power-scaling factor (alpha).

Arguments

x

draws object of posterior draws

log_component

numeric vector of log likelihood or log prior values

quantity

Character specifying quantity of interest (default is "mean"). Options are "mean", "sd", "var".

...

unused

Examples

Run this code
example_model <- example_powerscale_model()
draws <- example_model$draws
log_prior <- log_prior_draws(draws, joint = TRUE)
posterior::summarise_draws(
    posterior::subset_draws(draws, variable = c("mu", "sigma")),
    mean,
    mean_sens = ~powerscale_derivative(.x, log_prior, quantity = "mean")
)

Run the code above in your browser using DataLab