A wrapper function providing the quantities related to the M-step for \(\alpha_0\) and \(\sigma^2\).
m_step_regression(Y, W, W2, Z = NULL, a = -3/2, Int = TRUE)A list including
coef the MAP estimates of the \(\alpha_0\) parameters
sigma2_est the MAP estimate of \(\sigma^2\)
VCV posterior variance covariance matrix of \(\alpha_0\),
res_data dataframe containing MAP estimates, posterior variances, t-test statistics and associated p-values for \(\alpha_0\)
A matrix containing the outcome Y
Quantity \(E(W_0)\) as outlined in citation, output from W_update_fun
Quantity \(E(W^2_0)\) as outlined in citation, output from W_update_fun
A matrix or dataframe of other predictors to account for
(optional) parameter for changing the hyperparameter \(a\) (default, \(a=-3/2\) uses \(n-2\) as denominator for MAP of \(\sigma^2\))
(optional) Logical - should an intercept be used?
McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.