Learn R Programming

probe (version 1.1)

m_step_regression: Function for fitting the initial part of the M-step

Description

A wrapper function providing the quantities related to the M-step for \(\alpha_0\) and \(\sigma^2\).

Usage

m_step_regression(Y, W, W2, Z = NULL, a = -3/2, Int = TRUE)

Value

A list including

coef the MAP estimates of the \(\alpha_0\) parameters sigma2_est the MAP estimate of \(\sigma^2\)

VCV posterior variance covariance matrix of \(\alpha_0\), res_data dataframe containing MAP estimates, posterior variances, t-test statistics and associated p-values for \(\alpha_0\)

Arguments

Y

A matrix containing the outcome Y

W

Quantity \(E(W_0)\) as outlined in citation, output from W_update_fun

W2

Quantity \(E(W^2_0)\) as outlined in citation, output from W_update_fun

Z

A matrix or dataframe of other predictors to account for

a

(optional) parameter for changing the hyperparameter \(a\) (default, \(a=-3/2\) uses \(n-2\) as denominator for MAP of \(\sigma^2\))

Int

(optional) Logical - should an intercept be used?

References

McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.