- Y
The outcome variable.
- X
An n x M matrix of sparse predictors variables.
- ep
Value against which to compare convergence criterion (default = 0.001).
- maxit
Maximum number of iterations the algorithm will run for (default = 10000).
- Y_test
(optional) Test Y data used plotting purposes only (doesn't impact results).
- X_test
(optional) Test X data used plotting purposes only (doesn't impact results).
- verbose
A logical (true/false) value whether to print algorithm iteration progress and summary quantities (default = FALSE).
- signal
(optional) A vector of indicies of the true non-null coefficients. This is used to calculate the true and false discovery rates by iteration for simulated data. Used plotting purposes only (doesn't impact results).
- eta_i
(optional) A vector of the true signal. This is used to calculate the MSE by iteration for simulated data. Used plotting purposes only (doesn't impact results).
- alpha
(optional) significance level
- plot_ind
A logical values (True/False) for whether to output plots on algorithm results and progress (default = FALSE)
- order.method
Updating order and initial values of the algorithm. For lasso (default) or ridge, a lasso or a ridge regression model (fit with 10-fold CV) will be fitted and used. The update_order is defined by the absolute values of the coefficient and beta_start is the coefficient values. When using none, update_order and beta_start must be given. random will randomly select the updating order and use very small values for beta_start.
- adj
Bandwidth parameter for empirical Bayes E-step. The bandwidth will be equal to adj times Silverman's 'rule of thumb' (default = 10).
- delta
Learning rate for iteration t is (1 + t)^(-1 + delta) (default delta = 0.4).
- update_order
Manual value for the updating order for when order.method = "none" is used.
- beta_start
Manual value for the starting beta coefficients for when order.method = "none" is used.
- seed
Seed value to ensure reproducibility when order.method = "lasso", order.method = "ridge", or order.method = "random".