Learn R Programming

probemod (version 0.2.1)

jn: Johnson-Neyman Technique

Description

Probe moderation effect using the Johnson-Neyman technique

Usage

jn(model, dv, iv, mod, mrange, alpha = 0.05, yas = "none")

Arguments

model
Regression model (lm, glm, list).
dv
Dependent variable (character).
iv
Independent variable (character).
mod
Moderator variable(s) (character or character vector).
mrange
Range of values that jn should examine for moderator variable. Uses the current range of moderator values by default (numeric vector).
alpha
Alpha level to use (numeric).
yas
Show y (or conditional effect) as: "none", "ratio","probability","percentage", yas="none" by default.

Value

  • A list with the elements

References

Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., Jr, & McClelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277-288.

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373-400.

Examples

Run this code
myModel <- lm('DV ~ IV + MOD', data=someData)
jnresults <- jn(myModel, dv='DV', iv='IV', mod='MOD')
jnresults <- jn(myModel, dv='DV', iv='IV', mod='MOD', alpha=.01)
plot(jnresults)

Run the code above in your browser using DataLab