# Turn off printing for CRAN checks
options("procs.print" = FALSE)
# Prepare sample data
set.seed(123)
dat <- cars
samplecar <- sample(c(TRUE, FALSE), nrow(cars), replace=TRUE, prob=c(0.6, 0.4))
dat$group <- ifelse(samplecar %in% seq(1, nrow(cars)), "Group A", "Group B")
# Example 1: R Model Syntax
res1 <- proc_reg(dat, model = dist ~ speed)
# View Results
res1
# MODEL TYPE DEPVAR RMSE Intercept speed dist
# 1 MODEL1 PARMS dist 15.37959 -17.57909 3.932409 -1
# Example 2: SAS Model Syntax
res2 <- proc_reg(dat, model = "dist = speed")
# View Results
res2
# MODEL TYPE DEPVAR RMSE Intercept speed dist
# 1 MODEL1 PARMS dist 15.37959 -17.57909 3.932409 -1
# Example 3: Report Output
res3 <- proc_reg(dat, model = dist ~ speed, output = report)
# View Results
res3
# $NObs
# LABEL NOBS
# 1 Number of Observations Read 50
# 2 Number of Observations Used 50
#
# $ANOVA
# LABEL DF SUMSQ MEANSQ FVAL PROBF
# 1 Model 1 21185.46 21185.4589 89.56711 1.489919e-12
# 2 Error 48 11353.52 236.5317 NA NA
# 3 Corrected Total 49 32538.98 NA NA NA
#
# $FitStatistics
# RMSE DEPMEAN COEFVAR RSQ ADJRSQ
# 1 15.37959 42.98 35.78312 0.6510794 0.6438102
#
# $ParameterEstimates
# PARM DF EST STDERR T PROBT
# 1 Intercept 1 -17.579095 6.7584402 -2.601058 1.231882e-02
# 2 speed 1 3.932409 0.4155128 9.463990 1.489919e-12
# Example 4: By variable
res4 <- proc_reg(dat, model = dist ~ speed, by = group)
# View Results
res4
# BY MODEL TYPE DEPVAR RMSE Intercept speed dist
# 1 Group A MODEL1 PARMS dist 15.35049 -24.888326 4.275357 -1
# 2 Group B MODEL1 PARMS dist 15.53676 -8.705547 3.484381 -1
# Example 5: "tableout" Option
res5 <- proc_reg(dat, model = dist ~ speed, options = tableout)
# View Results
res5
# MODEL TYPE DEPVAR RMSE Intercept speed dist
# 1 MODEL1 PARMS dist 15.37959 -17.57909489 3.932409e+00 -1
# 2 MODEL1 STDERR dist 15.37959 6.75844017 4.155128e-01 NA
# 3 MODEL1 T dist 15.37959 -2.60105800 9.463990e+00 NA
# 4 MODEL1 PVALUE dist 15.37959 0.01231882 1.489919e-12 NA
# 5 MODEL1 L95B dist 15.37959 -31.16784960 3.096964e+00 NA
# 6 MODEL1 U95B dist 15.37959 -3.99034018 4.767853e+00 NA
# Example 6: Multiple Models plus Statistics Keywords
res6 <- proc_reg(dat, model = list(mod1 = dist ~ speed,
mod2 = speed ~ dist),
stats = v(press, seb))
# View Results
res6
# MODEL TYPE DEPVAR RMSE PRESS Intercept speed dist
# 1 mod1 PARMS dist 15.379587 12320.2708 -17.5790949 3.9324088 -1.00000000
# 2 mod1 SEB dist 15.379587 NA 6.7584402 0.4155128 -1.00000000
# 3 mod2 PARMS speed 3.155753 526.2665 8.2839056 -1.0000000 0.16556757
# 4 mod2 SEB speed 3.155753 NA 0.8743845 -1.0000000 0.01749448
Run the code above in your browser using DataLab