# Turn off printing for CRAN checks
options("procs.print" = FALSE)
# Prepare sample data
dat1 <- subset(sleep, group == 1, c("ID", "extra"))
dat2 <- subset(sleep, group == 2, c("ID", "extra"))
dat <- data.frame(ID = dat1$ID, group1 = dat1$extra, group2 = dat2$extra)
# View sample data
dat
# ID group1 group2
# 1 1 0.7 1.9
# 2 2 -1.6 0.8
# 3 3 -0.2 1.1
# 4 4 -1.2 0.1
# 5 5 -0.1 -0.1
# 6 6 3.4 4.4
# 7 7 3.7 5.5
# 8 8 0.8 1.6
# 9 9 0.0 4.6
# 10 10 2.0 3.4
# Example 1: T-Test using h0 option
res1 <- proc_ttest(dat, var = "group1", options = c("h0" = 0))
# View results
res1
# $Statistics
# VAR N MEAN STD STDERR MIN MAX
# 1 group1 10 0.75 1.78901 0.5657345 -1.6 3.7
#
# $ConfLimits
# VAR MEAN LCLM UCLM STD
# 1 group1 0.75 -0.5297804 2.02978 1.78901
#
# $TTests
# VAR DF T PROBT
# 1 group1 9 1.32571 0.2175978
# Example 2: T-Test using paired parameter
res2 <- proc_ttest(dat, paired = "group2 * group1")
# View results
res2
# $Statistics
# VAR1 VAR2 DIFF N MEAN STD STDERR MIN MAX
# 1 group2 group1 group2-group1 10 1.58 1.229995 0.3889587 0 4.6
#
# $ConfLimits
# VAR1 VAR2 DIFF MEAN LCLM UCLM STD LCLMSTD UCLMSTD
# 1 group2 group1 group2-group1 1.58 0.7001142 2.459886 1.229995 0.8460342 2.245492
#
# $TTests
# VAR1 VAR2 DIFF DF T PROBT
# 1 group2 group1 group2-group1 9 4.062128 0.00283289
# Example 3: T-Test using class parameter
res3 <- proc_ttest(sleep, var = "extra", class = "group")
# View results
res3
# $Statistics
# VAR CLASS METHOD N MEAN STD STDERR MIN MAX
# 1 extra 1 10 0.75 1.789010 0.5657345 -1.6 3.7
# 2 extra 2 10 2.33 2.002249 0.6331666 -0.1 5.5
# 3 extra Diff (1-2) Pooled NA -1.58 NA 0.8490910 NA NA
# 4 extra Diff (1-2) Satterthwaite NA -1.58 NA 0.8490910 NA NA
#
# $ConfLimits
# VAR CLASS METHOD MEAN LCLM UCLM STD LCLMSTD UCLMSTD
# 1 extra 1 0.75 -0.5297804 2.0297804 1.789010 1.230544 3.266034
# 2 extra 2 2.33 0.8976775 3.7623225 2.002249 1.377217 3.655326
# 3 extra Diff (1-2) Pooled -1.58 -3.3638740 0.2038740 NA NA NA
# 4 extra Diff (1-2) Satterthwaite -1.58 -3.3654832 0.2054832 NA NA NA
#
# $TTests
# VAR METHOD VARIANCES DF T PROBT
# 1 extra Pooled Equal 18.00000 -1.860813 0.07918671
# 2 extra Satterthwaite Unequal 17.77647 -1.860813 0.07939414
#
# $Equality
# VAR METHOD NDF DDF FVAL PROBF
# 1 extra Folded F 9 9 1.252595 0.7427199
# Example 4: T-Test using alpha option and by variable
res4 <- proc_ttest(sleep, var = "extra", by = "group", options = c(alpha = 0.1))
# View results
res4
# $Statistics
# BY VAR N MEAN STD STDERR MIN MAX
# 1 1 extra 10 0.75 1.789010 0.5657345 -1.6 3.7
# 2 2 extra 10 2.33 2.002249 0.6331666 -0.1 5.5
#
# $ConfLimits
# BY VAR MEAN LCLM UCLM STD LCLMSTD UCLMSTD
# 1 1 extra 0.75 -0.2870553 1.787055 1.789010 1.304809 2.943274
# 2 2 extra 2.33 1.1693340 3.490666 2.002249 1.460334 3.294095
#
# $TTests
# BY VAR DF T PROBT
# 1 1 extra 9 1.325710 0.217597780
# 2 2 extra 9 3.679916 0.005076133
# Example 5: Single variable T-Test using "long" shaping option
res5 <- proc_ttest(sleep, var = "extra", output = "long")
# View results
res5
# $Statistics
# STAT extra
# 1 N 20.0000000
# 2 MEAN 1.5400000
# 3 STD 2.0179197
# 4 STDERR 0.4512206
# 5 MIN -1.6000000
# 6 MAX 5.5000000
#
# $ConfLimits
# STAT extra
# 1 MEAN 1.5400000
# 2 LCLM 0.5955845
# 3 UCLM 2.4844155
# 4 STD 2.0179197
# 5 LCLMSTD 1.5346086
# 6 UCLMSTD 2.9473163
#
# $TTests
# STAT extra
# 1 DF 19.00000000
# 2 T 3.41296500
# 3 PROBT 0.00291762
Run the code above in your browser using DataLab