Learn R Programming

prodlim (version 1.0.5)

plot.prodlim: Plotting event probabilities over time

Description

Function to plot survival and cumulative incidence curves against time.

Usage

## S3 method for class 'prodlim':
plot(x, what, cause = 1, newdata, add = FALSE, col, lty, lwd,
             ylim, xlim, xlab = "Time", ylab, legend = TRUE,
             legend.args= NULL, mark.time = FALSE, cex.mark.time = 1.5,
             conf.int = TRUE, conf.int.args = list(col = "gray"),
             atrisk, atrisk.args, timeOrigin,...)

Arguments

x
an object of class `prodlim' as returned by the prodlim function.
what
controls what part of the object is plotted. Defaults to "survival" for the Kaplan-Meier estimate of the survival function in two state models and to "incidence" for the Aalen-Johansen estimate of the cumulative incid
cause
Determines the cause of the cumulative incidence function. When there are strata defined by newdata only one cause is possible.
newdata
a data frame containing strata for which plotted curves are desired.
add
if 'TRUE' curves are added to an existing plot.
col
color for curves defaults to 1:number(curves)
lty
line type for curves defaults to 1
lwd
line width for all curves
ylim
limits of the y-axis
xlim
limits of the x-axis
ylab
label for the y-axis
xlab
label for the x-axis
legend
if TRUE a legend is be plotted automatically
legend.args
list of arguments that is passed to the function legend
mark.time
if TRUE the curves are tick-marked at right censoring times
cex.mark.time
cex for the tick-marks if mark.time is set TRUE
conf.int
if TRUE pointwise confidence intervals are plotted
conf.int.args
list with extra arguments like col, lty, etc. used for the pointwise confidence intervals. Extra argument time determines time points at which confidence intervals are plotted.
atrisk
if TRUE display numbers of subjects at risk. if data are cluster correlated also the number of clusters with at least one subject at risk is given.
atrisk.args
list of extra arguments for plotting of the numbers at risk. Recognized extra arguments are: times: at which time points numbers are plotted. labels vector of labels, e.g. "No. Patients".
timeOrigin
Start of the time axis
...
graphical parameters that are passed to function plot

Value

  • NULL

Details

See examples.

See Also

prodlim,plot.Hist,summary.prodlim, neighborhood

Examples

Run this code
## simulate right censored data from a two state model 
dat <- data.frame(time=rexp(100),status=rbinom(100,1,.3),X=rbinom(100,1,.5),Z=rnorm(100,10,3),patnr=sample(1:10,size=100,replace=TRUE))
with(dat,plot(Hist(time,status)))

### marginal Kaplan-Meier estimator
kmfit <- prodlim(Hist(time, status) ~ 1, data = dat)
plot(kmfit)

### Kaplan-Meier in discrete strata
kmfitX <- prodlim(Hist(time, status) ~ X, data = dat)
plot(kmfitX)

### Kaplan-Meier in continuous strata
kmfitZ <- prodlim(Hist(time, status) ~ Z, data = dat)
plot(kmfitZ,newdata=data.frame(Z=c(5,7,12)))

### Cluster-correlated data
kmfitC <- prodlim(Hist(time, status) ~ cluster(patnr), data = dat)
plot(kmfitC,atrisk.args=list(labels=c("Units","Patients")))

## simulate right censored data from a competing risk model 
datCR <- data.frame(time=rexp(100),status=rbinom(100,2,.3),X=rbinom(100,1,.5),Z=rnorm(100,10,3))
with(datCR,plot(Hist(time,status)))

### marginal Aalen-Johansen estimator
ajfit <- prodlim(Hist(time, status) ~ 1, data = datCR)
plot(ajfit)

### conditional Aalen-Johansen estimator
ajfitXZ <- prodlim(Hist(time, status) ~ X+Z, data = datCR)
plot(ajfitXZ,newdata=data.frame(X=c(1,1,0),Z=c(4,10,10)))
plot(ajfitXZ,newdata=data.frame(X=c(1,1,0),Z=c(4,10,10)),cause=2)

Run the code above in your browser using DataLab