if (requireNamespace("rstanarm", quietly = TRUE)) {
# Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)
# The "stanreg" fit which will be used as the reference model (with small
# values for `chains` and `iter`, but only for technical reasons in this
# example; this is not recommended in general):
fit <- rstanarm::stan_glm(
y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)
# Projection onto an arbitrary combination of predictor terms (with a small
# value for `nclusters`, but only for the sake of speed in this example;
# this is not recommended in general):
prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,
seed = 9182)
# Predictions (at the training points) from the submodel onto which the
# reference model was projected:
prjl <- proj_linpred(prj)
prjp <- proj_predict(prj, .seed = 7364)
}
Run the code above in your browser using DataLab