Learn R Programming

promor (version 0.2.1)

normalize_data: Normalize intensity data

Description

This function normalizes data using a user-specified normalization method.

Usage

normalize_data(df, method = "quantile")

Value

A norm_df object, which is a data frame of normalized protein intensities.

Arguments

df

An imp_df object with missing values imputed using impute_na or a raw_df object containing missing values.

method

Name of the normalization method to use. Choices are "none", "scale", "quantile" or "cyclicloess." Default is "quantile."

Author

Chathurani Ranathunge

Details

  • This function normalizes intensity values to achieve consistency among samples.

  • It assumes that the intensities in the data frame have been log-transformed, therefore, it is important to make sure that create_df was run with log_tr = TRUE(default) when creating the raw_df object.

See Also

  • impute_na

  • See normalizeBetweenArrays in the R package limma for more information on the different normalization methods available.

Examples

Run this code
## Generate a raw_df object with default settings. No technical replicates.
raw_df <- create_df(
  prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt",
  exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt"
)

## Impute missing values in the data frame using the default minProb
## method prioir to normalization.
imp_df <- impute_na(raw_df)

## Normalize the imp_df object using the default quantile method
norm_df1 <- normalize_data(imp_df)

## Use the cyclicloess method
norm_df2 <- normalize_data(imp_df, method = "cyclicloess")

## Normalize data in the raw_df object prior to imputation.
norm_df3 <- normalize_data(raw_df)

Run the code above in your browser using DataLab