ttest.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", var.equal = F)
modT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", col=1)
samT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH")
efronT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH")
shrinkT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", var.equal = F)
ExpressionSet
of volume data. Usually as returned by ES.prot
.
ttest.Prot
and shrinkT.Prot
.
modT.Prot
. If there is more than one factor in pData
, indicates the column to use for the analysisExpressionSet
containing only the significant spots (see Examples).studentt.stat
).
- two tests especially modified for micro-array analysis : Efron's t-test (adapted from efront.stat
, Efron et al, 2001) and the modified t-test used in Significance Analysis for Microarray (adapted from samr
, Tusher et al, 2001)
- two methods that take advantage of hierarchical Bayes methods for estimation of the variance across genes: the moderate t-test from Smyth (using limma
; see Smyth, 2004) and the "Shrinkage t" statistic test from Opgen-Rhein & Strimmer (adapted from shrinkcat.stat
; see Opgen-Rhein & Strimmer, 2007).
As statistical tests allowing the identification of differentially expressed proteins must take into account a correction for multiple tests in order to avoid false conclusions. These functions also provides different methods to estimate the False Discovery Rate :
- the classical FDR estimator of Benjamini & Hochberg (using p.adjust
; see Benjamini & Hochberg, 1995)
- the Fdr estimator of Strimmer (based on local fdr calculation) (using fdrtool
; see Strimmer 2008)
- the "robust FDR" estimator of Pounds & Cheng (implemented in robust.fdr
for the prot2D
package; see Pounds & Cheng, 2006)
- Fdr method of Storey and Tibshirani (2003), also known as "q-values" (using qvalue
.
Norm.qt
,ES.prot
,fdrtool
,limma
,
samr
,studentt.stat
,shrinkt.stat
,
efront.stat
,qvalue
data(pecten)
data(pecten.fac)
pecten.norm <- Norm.qt(pecten, n1=6, n2=6, plot=TRUE) #Quantiles normalization of the data
ES.p <- ES.prot(pecten.norm, n1=6, n2=6, f=pecten.fac)
ES.diff <- modT.Prot(ES.p, fdr.thr=0.1, plot=TRUE)
featureNames(ES.diff) # Names of the spots selected for a moderated t-test with a fdr of 0.1
fData(ES.diff) # Displaying fold change (as log2(ratio)) for selected spots
exprs(ES.diff) # Volume normalized data for all the selected spots
## Not run: heatplot(ES.diff) #Great heatmap of the selected spots (require made4 Bioconductor package )
Run the code above in your browser using DataLab