ttest.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", var.equal = F)
modT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", col=1)
samT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH")
efronT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH")
shrinkT.Prot(data, plot = T, fdr.thr = 0.1, Fold2 = F, method.fdr = "BH", var.equal = F)ExpressionSet of volume data. Usually as returned by ES.prot.
ttest.Prot and shrinkT.Prot.
modT.Prot. If there is more than one factor in pData, indicates the column to use for the analysisExpressionSet containing only the significant spots (see Examples).studentt.stat).
- two tests especially modified for micro-array analysis : Efron's t-test (adapted from efront.stat, Efron et al, 2001) and the modified t-test used in Significance Analysis for Microarray (adapted from samr, Tusher et al, 2001)
- two methods that take advantage of hierarchical Bayes methods for estimation of the variance across genes: the moderate t-test from Smyth (using limma; see Smyth, 2004) and the "Shrinkage t" statistic test from Opgen-Rhein & Strimmer (adapted from shrinkcat.stat; see Opgen-Rhein & Strimmer, 2007).
As statistical tests allowing the identification of differentially expressed proteins must take into account a correction for multiple tests in order to avoid false conclusions. These functions also provides different methods to estimate the False Discovery Rate :
- the classical FDR estimator of Benjamini & Hochberg (using p.adjust; see Benjamini & Hochberg, 1995)
- the Fdr estimator of Strimmer (based on local fdr calculation) (using fdrtool; see Strimmer 2008)
- the "robust FDR" estimator of Pounds & Cheng (implemented in robust.fdr for the prot2D package; see Pounds & Cheng, 2006)
- Fdr method of Storey and Tibshirani (2003), also known as "q-values" (using qvalue.
Norm.qt,ES.prot,fdrtool,limma,
samr,studentt.stat,shrinkt.stat,
efront.stat,qvalue
data(pecten)
data(pecten.fac)
pecten.norm <- Norm.qt(pecten, n1=6, n2=6, plot=TRUE) #Quantiles normalization of the data
ES.p <- ES.prot(pecten.norm, n1=6, n2=6, f=pecten.fac)
ES.diff <- modT.Prot(ES.p, fdr.thr=0.1, plot=TRUE)
featureNames(ES.diff) # Names of the spots selected for a moderated t-test with a fdr of 0.1
fData(ES.diff) # Displaying fold change (as log2(ratio)) for selected spots
exprs(ES.diff) # Volume normalized data for all the selected spots
## Not run: heatplot(ES.diff) #Great heatmap of the selected spots (require made4 Bioconductor package )Run the code above in your browser using DataLab