powered by
Multidimensional Scaling of compositional data
Multidimensional Scaling of distributional data
Multidimensional Scaling of a dissimilarity matrix
MDS(x, ...)## S3 method for class 'compositional': MDS(x, classical = FALSE, ...)## S3 method for class 'distributional': MDS(x, classical = FALSE, ...)## S3 method for class 'diss': MDS(x, classical = FALSE, ...)
## S3 method for class 'compositional': MDS(x, classical = FALSE, ...)
## S3 method for class 'distributional': MDS(x, classical = FALSE, ...)
## S3 method for class 'diss': MDS(x, classical = FALSE, ...)
distributional
compositional
diss
x
cmdscale
isoMDS
dist
MDS
points: a two column vector of the fitted configuration
points
classical: a boolean flag indicating whether the MDS configuration was obtained by classical (TRUE) or nonmetric (FALSE) MDS.
classical
TRUE
FALSE
diss: the dissimilarity matrix used for the MDS analysis
stress: (only if classical=TRUE) the final stress achieved (in percent)
stress
classical=TRUE
data(Namib) plot(MDS(Namib$Major,classical=TRUE))
Run the code above in your browser using DataLab