distributional
, compositional
, counts
or
varietal
Calculate the dissimilarity matrix between two datasets of class
distributional
or compositional
using the Kolmogorov-Smirnov,
Sircombe-Hazelton, Aitchison or Bray-Curtis distance
# S3 method for distributional
diss(x, method = NULL, log = FALSE, verbose = FALSE, ...)# S3 method for compositional
diss(x, method = NULL, ...)
# S3 method for counts
diss(x, method = NULL, ...)
# S3 method for varietal
diss(x, method = NULL, ...)
an object of class diss
an object of class distributional
,
compositional
or counts
if x
has class distributional
: either
"KS"
, "Wasserstein"
, "Kuiper"
or
"SH"
;
if x
has class compositional
: either
"aitchison"
or "bray"
;
if x
has class counts
: either "chisq"
or
"bray"
;
if x
has class varietal
: either "KS"
,
"W2_1D"
or "W2"
.
logical. If TRUE
, subjects the distributional
data to a logarithmic transformation before calculating the
Wasserstein distance.
logical. If TRUE
, gives progress updates
during the construction of the dissimilarity matrix.
optional arguments
"KS"
stands for the Kolmogorov-Smirnov statistic,
"W2_1D"
for the 1-dimensional Wasserstein-2 distance,
"Kuiper"
for the Kuiper statistic, "SH"
for the
Sircombe-Hazelton distance, "aitchison"
for the
Aitchison logratio distance, "bray"
for the Bray-Curtis
distance, "chisq"
for the Chi-square distance, and "W2"
for the 2-dimensional Wasserstein-2 distance.
KS.diss bray.diss SH.diss Wasserstein.diss Kuiper.diss
data(Namib)
print(round(100*diss(Namib$DZ)))
Run the code above in your browser using DataLab