n.CT <- 100
n.CC <- 50
n.ECp <- 200
out.mean.CT <- 0
out.sd.CT <- 1
out.mean.CC <- 0
out.sd.CC <- 1
driftdiff <- 0
out.sd.EC <- 1
cov.C <- list(list(dist="norm",mean=0,sd=1,lab="cov1"),
list(dist="binom",prob=0.4,lab="cov2"))
cov.cor.C <- rbind(c( 1,0.1),
c(0.1, 1))
cov.EC <- list(list(dist="norm",mean=0,sd=1,lab="cov1"),
list(dist="binom",prob=0.4,lab="cov2"))
cov.cor.EC <- rbind(c( 1,0.1),
c(0.1, 1))
cov.effect <- c(0.1,0.1)
indata <- trial.simulation.cont(
n.CT=n.CT, n.CC=n.CC, n.ECp=n.ECp,
out.mean.CT=out.mean.CT, out.sd.CT=out.sd.CT,
out.mean.CC=out.mean.CC, out.sd.CC=out.sd.CC,
driftdiff=driftdiff, out.sd.EC=out.sd.EC,
cov.C=cov.C, cov.cor.C=cov.cor.C,
cov.EC=cov.EC, cov.cor.EC=cov.cor.EC, cov.effect=cov.effect)
n.EC <- 50
method.whomatch <- "conc.treat"
method.matching <- "optimal"
method.psorder <- NULL
out.psmatch <- psmatch(
study~cov1+cov2, data=indata, n.EC=n.EC,
method.whomatch=method.whomatch, method.matching=method.matching,
method.psorder=method.psorder)
indata.match <- rbind(indata[indata$study==1,],indata[out.psmatch$subjid.EC,])
method.borrow <- list(list(prior="cauchy",scale=2.0),
list(prior="normal",scale=0.5))
commensurate.cont(y~cov1,data=indata.match,method.borrow=method.borrow,chains=1,iter=100)
Run the code above in your browser using DataLab