if (FALSE) {
data(survData)
X <- survData[,c(4:5)]
XC <- NULL
n <- dim(survData)[1]
p <- dim(X)[2]
q <- 0
c0 <- rep(0, n)
yL <- yU <- survData[,1]
yU[which(survData[,2] == 0)] <- Inf
Y <- cbind(yL, yU, c0)
grpInx <- 1:p
K <- length(unique(grpInx))
#####################
## Hyperparameters
a.sigSq= 0.7
b.sigSq= 0.7
mu0 <- 0
h0 <- 10^6
v = 10^6
hyperParams <- list(a.sigSq=a.sigSq, b.sigSq=b.sigSq, mu0=mu0, h0=h0, v=v)
###################
## MCMC SETTINGS
## Setting for the overall run
##
numReps <- 100
thin <- 1
burninPerc <- 0.5
## Tuning parameters for specific updates
##
L.beC <- 50
M.beC <- 1
eps.beC <- 0.001
L.be <- 100
M.be <- 1
eps.be <- 0.001
mu.prop.var <- 0.5
sigSq.prop.var <- 0.01
##
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
tuning=list(mu.prop.var=mu.prop.var, sigSq.prop.var=sigSq.prop.var,
L.beC=L.beC, M.beC=M.beC, eps.beC=eps.beC,
L.be=L.be, M.be=M.be, eps.be=eps.be))
#####################
## Starting Values
w <- log(Y[,1])
mu <- 0.1
beta <- rep(2, p)
sigSq <- 0.5
tauSq <- rep(0.4, p)
lambdaSq <- 100
betaC <- rep(0.11, q)
startValues <- list(w=w, beta=beta, tauSq=tauSq, mu=mu, sigSq=sigSq,
lambdaSq=lambdaSq, betaC=betaC)
fit <- aftGL_LT(Y, X, XC, grpInx, hyperParams, startValues, mcmcParams)
}
Run the code above in your browser using DataLab