plotcv(obj, stack = FALSE, index.res = 1, col = index.res, ...)
plotecdf(obj, stack = FALSE, index.res = 1:get.noutputs(obj), col = index.res, xlab = NULL, ...)
plotprcc(obj, index.res = 1:dim(obj$res)[2], col = "orange", ylab = NULL, ...)
plotscatter(obj, res = NULL, index.data = NULL, index.res = NULL, add.lm = TRUE, ylab = NULL, ...) NOTICE: plotecdf and plotcv only accept LHS objects! For plotting the likelihood profile
from a PLUE object, simply use plot(obj)
stack=FALSE generates
a series of plots, and stack=TRUE generates a single plot with the ECDF from
all variables identified by different colors.plotscatter produces a series of scatterplots from data.The function plotecdf plots the empirical cumulative density function
from an LHS object or PLUE object.
The function plotprcc plots the partial rank correlation coefficient
from an LHS object or PLUE object.
Finally, the plotcv function plots the empirical cummulative density function
(ecdf) of the coefficient of variation of the LHS resulting from a stochastic
simulation, along with a dotted line representing the coefficient of variation
of the whole result set. See the 'multiple' vignette for examples and interpretation.
The function plotscatter accepts an alternative invocation of plotscatter(obj, res)
in which obj is a data.frame consisting on the data to be plotted on the x axis, and
res is a data.frame consisting on the model results to be plotted on the y axis.
myLHS <- LHS(model=function(x) x[,1]+x[,2]*x[,3], factors=3, N=20, res.names="My Output")
plotecdf(myLHS, main="ECDF plot")
plotprcc(myLHS, main="PRCC plot")
plotscatter(myLHS)
Run the code above in your browser using DataLab