The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using
psych::fa(). Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)
efa_summary(
data,
cols,
rotation = "varimax",
optimal_factor_method = FALSE,
efa_plot = TRUE,
digits = 3,
n_factor = NULL,
post_hoc_cfa = FALSE,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)a fa object from psych
data.frame
columns. Support dplyr::select() syntax.
the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax'
Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer's MAP)
show explained variance by number of factor plot. default is TRUE.
number of digits to round to
number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor
a CFA model based on the extracted factor
suppress printing output
print streamlined output
If it is set to TRUE (default is FALSE), it will return a fa object from psych
efa_summary(lavaan::HolzingerSwineford1939, starts_with("x"), post_hoc_cfa = TRUE)
Run the code above in your browser using DataLab