The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using
psych::fa()
. Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)
efa_summary(
data,
cols,
rotation = "varimax",
optimal_factor_method = FALSE,
efa_plot = TRUE,
digits = 3,
n_factor = NULL,
post_hoc_cfa = FALSE,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)
a fa
object from psych
data.frame
columns. Support dplyr::select()
syntax.
the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax'
Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer's MAP)
show explained variance by number of factor plot. default is TRUE
.
number of digits to round to
number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor
a CFA model based on the extracted factor
suppress printing output
print streamlined output
If it is set to TRUE
(default is FALSE
), it will return a fa
object from psych
efa_summary(lavaan::HolzingerSwineford1939, starts_with("x"), post_hoc_cfa = TRUE)
Run the code above in your browser using DataLab