The function create a simple regression plot (no interaction). Can be used to visualize polynomial regression.
polynomial_regression_plot(
model,
model_data = NULL,
predictor,
graph_label_name = NULL,
x_lim = NULL,
y_lim = NULL,
plot_color = FALSE
)
an object of class ggplot
object from lm
optional dataframe (in case data cannot be retrieved from the model)
predictor variable name (must be character)
vector of length 3 or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2)
. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
the plot's upper and lower limit for the x-axis. Length of 2. Example: c(lower_limit, upper_limit)
the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
default if FALSE
. Set to TRUE
if you want to plot in color
It appears that predict
cannot handle categorical factors. All variables are converted to numeric before plotting.
fit = lm(data = iris, Sepal.Length ~ poly(Petal.Length,2))
polynomial_regression_plot(model = fit,predictor = 'Petal.Length')
Run the code above in your browser using DataLab