Last chance! 50% off unlimited learning
Sale ends in
sim.congeneric(loads = c(0.8, 0.7, 0.6, 0.5),N = NULL, err=NULL, short = TRUE, categorical=FALSE, low=-3,high=3)
The implied covariance matrix is just pattern %*% t(pattern).
item.sim
for other simulations, fa
for an example of factor scores, irt.fa
and polychoric
for the treatment of item data with discrete values.test <- sim.congeneric(c(.9,.8,.7,.6)) #just the population matrix
test <- sim.congeneric(c(.9,.8,.7,.6),N=100) # a sample correlation matrix
test <- sim.congeneric(short=FALSE, N=100)
round(cor(test$observed),2) # show a congeneric correlation matrix
f1=fa(test$observed,scores=TRUE)
round(cor(f1$scores,test$latent),2) #factor score estimates are correlated with but not equal to the factor scores
set.seed(42)
items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items
d4 <- irt.fa(items$observed) #item response analysis of congeneric measures
Run the code above in your browser using DataLab