## Not run:
# set.seed(17)
# d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items
# test <- irt.fa(d9$items)
# test
# op <- par(mfrow=c(3,1))
# plot(test,type="ICC")
# plot(test,type="IIC")
# plot(test,type="test")
# par(op)
# set.seed(17)
# items <- sim.congeneric(N=500,short=FALSE,categorical=TRUE) #500 responses to 4 discrete items
# d4 <- irt.fa(items$observed) #item response analysis of congeneric measures
# d4 #show just the irt output
# d4$fa #show just the factor analysis output
#
#
# op <- par(mfrow=c(2,2))
# plot(d4,type="ICC")
# par(op)
#
#
# #using the iq data set for an example of real items
# #first need to convert the responses to tf
# data(iqitems)
# iq.keys <- c(4,4,4, 6, 6,3,4,4, 5,2,2,4, 3,2,6,7)
#
# iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) #just the responses
# iq.irt <- irt.fa(iq.tf)
# print(iq.irt,short=FALSE) #show the IRT as well as factor analysis output
# p.iq <- plot(iq.irt) #save the invisible summary table
# p.iq #show the summary table of information by ability level
# #select a subset of these variables
# small.iq.irt <- irt.select(iq.irt,c(1,5,9,10,11,13))
# small.irt <- irt.fa(small.iq.irt)
# plot(small.irt)
# #find the information for three subset of iq items
# keys <- make.keys(16,list(all=1:16,some=c(1,5,9,10,11,13),others=c(1:5)))
# plot(iq.irt,keys=keys)
# ## End(Not run)
#compare output to the ltm package or Kamata and Bauer -- these are in logistic units
ls <- irt.fa(lsat6)
#library(ltm)
# lsat.ltm <- ltm(lsat6~z1)
# round(coefficients(lsat.ltm)/1.702,3) #convert to normal (approximation)
#
# Dffclt Dscrmn
#Q1 -1.974 0.485
#Q2 -0.805 0.425
#Q3 -0.164 0.523
#Q4 -1.096 0.405
#Q5 -1.835 0.386
#Normal results ("Standardized and Marginal")(from Akihito Kamata )
#Item discrim tau
# 1 0.4169 -1.5520
# 2 0.4333 -0.5999
# 3 0.5373 -0.1512
# 4 0.4044 -0.7723
# 5 0.3587 -1.1966
#compare to ls
#Normal results ("Standardized and conditional") (from Akihito Kamata )
#item discrim tau
# 1 0.3848 -1.4325
# 2 0.3976 -0.5505
# 3 0.4733 -0.1332
# 4 0.3749 -0.7159
# 5 0.3377 -1.1264
#compare to ls$fa and ls$tau
#Kamata and Bauer (2008) logistic estimates
#1 0.826 2.773
#2 0.723 0.990
#3 0.891 0.249
#4 0.688 1.285
#5 0.657 2.053
Run the code above in your browser using DataLab