Learn R Programming

psych (version 2.6.1)

pairs.panels: SPLOM, histograms and correlations for a data matrix

Description

Adapted from the help page for pairs, pairs.panels shows a scatter plot of matrices (SPLOM), with bivariate scatter plots below the diagonal, histograms on the diagonal, and the Pearson correlation above the diagonal. Useful for descriptive statistics of small data sets. If lm=TRUE, linear regression fits are shown for both y by x and x by y. Correlation ellipses are also shown. Points may be given different colors depending upon some grouping variable. Robust fitting is done using lowess or loess regression. Confidence intervals of either the lm or loess are drawn if requested.

Usage

# S3 method for panels
pairs(x, smooth = TRUE, scale = FALSE, density=TRUE,ellipses=TRUE,
     digits = 2,method="pearson", pch = 20, lm=FALSE,cor=TRUE,jiggle=FALSE,factor=2, 
     hist.col="cyan",show.points=TRUE,rug=TRUE, breaks = "Sturges",cex.cor=1,wt=NULL,
     smoother=FALSE,stars=FALSE,ci=FALSE,alpha=.05,hist.border="black" ,
     line.col="blue",ci.col="light blue",...)

Arguments

Value

A scatter plot matrix (SPLOM) is drawn in the graphic window. The lower off diagonal draws scatter plots, the diagonal histograms, the upper off diagonal reports the Pearson correlation (with pairwise deletion).

If lm=TRUE, then the scatter plots are drawn above and below the diagonal, each with a linear regression fit. Useful to show the difference between regression lines.

Details

Shamelessly adapted from the pairs help page. Uses panel.cor, panel.cor.scale, and panel.hist, all taken from the help pages for pairs. Also adapts the ellipse function from John Fox's car package.

pairs.panels is most useful when the number of variables to plot is less than about 6-10. It is particularly useful for an initial overview of the data.

To show different groups with different colors, use a plot character (pch) between 21 and 25 and then set the background color to vary by group. (See the second example).

When plotting more than about 10 variables, it is useful to set the gap parameter to something less than 1 (e.g., 0). Alternatively, consider using cor.plot

In addition, when plotting more than about 100-200 cases, it is useful to set the plotting character to be a point. (pch=".")

Sometimes it useful to draw the correlation ellipses and best fitting loess without the points. (points.false=TRUE).

See Also

pairs which is the base from which pairs.panels is derived, cor.plot to do a heat map of correlations, and scatter.hist to draw a single correlation plot with histograms and best fitted lines.

Also see outlier for an example of coloring a subset of the points.

To find the probability "significance" of the correlations using normal theory, use corr.test. To find confidence intervals using boot strapping procedures, use cor.ci. To graphically show confidence intervals, see cor.plot.upperLowerCi.

Examples

Run this code

pairs.panels(attitude)   #see the graphics window
data(iris)
pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species],
        pch=21,main="Fisher Iris data by Species") #to show color grouping

pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species],
  pch=21+as.numeric(iris$Species),main="Fisher Iris data by Species",hist.col="red") 
   #to show changing the diagonal
   
#now show confidence intervals
pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species], ci=TRUE,
  pch=21+as.numeric(iris$Species),main="Fisher Iris data by Species",hist.col="red") 
   #to show changing the diagonal
   
#to show 'significance'
   pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species],
  pch=21+as.numeric(iris$Species),main="Fisher Iris data by Species",hist.col="red",stars=TRUE) 
  


#demonstrate not showing the data points
data(sat.act)
pairs.panels(sat.act,show.points=FALSE)
#better yet is to show the points as a period
pairs.panels(sat.act,pch=".")
#show many variables with 0 gap between scatterplots
# data(bfi)
# pairs.panels(bfi,show.points=FALSE,gap=0)

#plot raw data points and then the weighted correlations.
#output from statsBy
sb <- statsBy(sat.act,"education")
pairs.panels(sb$mean,wt=sb$n)  #report the weighted correlations
#compare with 
pairs.panels(sb$mean) #unweighted correlations

#to color just some of the data points, see the example from outlier

Run the code above in your browser using DataLab