Learn R Programming

psychReport (version 3.0.2)

aovTable: aovTable

Description

Adjust ezANOVA table output. Options include calculation of alternative effect sizes (eta squared, partial eta squared), the calculation of marginal means and formatting options for the ANOVA table (e.g., detailed, rounding).

Usage

aovTable(
  aovObj,
  effectSize = "pes",
  sphericityCorrections = TRUE,
  sphericityCorrectionType = "GG",
  sphericityCorrectionAdjDF = FALSE,
  removeSumSquares = TRUE
)

Value

list

Arguments

aovObj

Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)

effectSize

Effect size (pes vs. ges)

sphericityCorrections

TRUE/FALSE (ezANOVA)

sphericityCorrectionType

"GG" (default) vs. "HF" (ezANOVA)

sphericityCorrectionAdjDF

TRUE/FALSE Should DF's values be corrected?

removeSumSquares

TRUE/FALSE Remove SSn/SSd columns from the ANOVA table

Examples

Run this code
# Example 1:
# create dataframe with 2(Comp: comp vs. incomp) and 2(Side: left vs. right) factors/levels
dat <- createDF(nVP = 20, nTrl = 1,
                design = list("Comp" = c("comp", "incomp"),
                              "Side" = c("left", "right")))

dat <- addDataDF(dat,
                 RT = list("Comp:Side comp:left"    = c(500, 150, 150),
                           "Comp:Side comp:right"   = c(500, 150, 150),
                           "Comp:Side incomp:left"  = c(500, 150, 150),
                           "Comp:Side incomp:right" = c(500, 150, 150)))

aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)
aovRT <- aovTable(aovRT)

# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),
                 return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)

Run the code above in your browser using DataLab