# NOT RUN {
## Create output table for meta-analysis of correlations
ma_r_obj <- ma_r(ma_method = "ic", rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi,
construct_x = x_name, construct_y = y_name,
moderators = moderator, data = data_r_meas_multi)
ma_r_obj <- ma_r_ad(ma_obj = ma_r_obj, correct_rr_x = FALSE, correct_rr_y = FALSE)
metabulate(ma_obj = ma_r_obj, path = "meta tables correlations.rtf")
## Create output table for meta-analysis of d values
ma_d_obj <- ma_d(ma_method = "ic", d = d, n1 = n1, n2 = n2, ryy = ryyi,
construct_y = construct, data = data_d_meas_multi)
ma_d_obj <- ma_d_ad(ma_obj = ma_d_obj, correct_rr_g = FALSE, correct_rr_y = FALSE)
metabulate(ma_obj = ma_d_obj, path = "meta tables d values.rtf")
## Create output table for meta-analysis of generic effect sizes
dat <- data.frame(es = data_r_meas_multi$rxyi,
n = data_r_meas_multi$n,
var_e = (1 - data_r_meas_multi$rxyi^2)^2 / (data_r_meas_multi$n - 1))
ma_obj <- ma_generic(es = es, n = n, var_e = var_e, data = dat)
metabulate(ma_obj = ma_obj, path = "meta tables generic es.rtf")
# }
Run the code above in your browser using DataLab