# NOT RUN {
## Run a meta-analysis using simulated UVIRR data:
ma_obj <- ma_r_ic(rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi, ux = ux,
correct_rr_y = FALSE, data = data_r_uvirr)
ma_obj <- ma_r_ad(ma_obj, correct_rr_y = FALSE)
## Pass the meta-analysis object to the sensitivity() function:
ma_obj <- sensitivity(ma_obj = ma_obj, boot_iter = 10, cumulative = TRUE,
boot_ci_type = "norm", sort_method = "inv_var")
## Examine the tables and plots produced for the IC meta-analysis:
ma_obj$follow_up_analyses$bootstrap$barebones$`Analysis ID = 1`
ma_obj$follow_up_analyses$bootstrap$individual_correction$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$leave1out$individual_correction$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$cumulative$individual_correction$true_score$`Analysis ID = 1`
## Examine the tables and plots produced for the AD meta-analysis:
ma_obj$follow_up_analyses$bootstrap$artifact_distribution$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$leave1out$artifact_distribution$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$cumulative$artifact_distribution$true_score$`Analysis ID = 1`
# }
Run the code above in your browser using DataLab