Learn R Programming

psychmeta (version 0.2.4)

summarize_ads: Summarize artifact information from meta-analyses into table format

Description

Summarize artifact information from meta-analyses into table format

Usage

summarize_ads(ma_obj)

Arguments

ma_obj

A meta-analysis object of correlations or d values with psychometric information.

Value

A table of artifact information.

Examples

Run this code
# NOT RUN {
## Artifact distributions from "ma_r" with individual corrections
ma_obj_ic_master <- ma_r(ma_method = "ic", rxyi = "rxyi", n = "n",
                         rxx = "rxxi", ryy = "ryyi",
                         pairwise_ads = TRUE,
                         correct_rr_x = FALSE, correct_rr_y = FALSE,
                         construct_x = "x_name", construct_y = "y_name",
                         sample_id = "sample_id", moderators = "moderator",
                         data = data_r_meas_multi)
summarize_ads(ma_obj = ma_obj_ic_master)


## Artifact distributions from a single individual-correction meta-analysis of correlations
ma_obj_ic <- ma_obj_ic_master$construct_pairs$`Pair ID = 1: X = X, Y = Y`
summarize_ads(ma_obj = ma_obj_ic)

## Artifact distributions from a single artifact-distribution correction meta-analysis
summarize_ads(ma_obj = ma_r_ad(ma_obj_ic, correct_rr_x = FALSE, correct_rr_y = FALSE))


## Artifact distributions from "ma_r" with artifact-distribution corrections (pairwise ADs)
ma_obj_ad_pairwise <- ma_r(ma_method = "ad", rxyi = "rxyi", n = "n",
                           rxx = "rxxi", ryy = "ryyi",
                           pairwise_ads = TRUE,
                           correct_rr_x = FALSE, correct_rr_y = FALSE,
                           construct_x = "x_name", construct_y = "y_name",
                           sample_id = "sample_id", moderators = "moderator",
                           data = data_r_meas_multi)
summarize_ads(ma_obj = ma_obj_ad_pairwise)

## Artifact distributions from "ma_r" with artifact-distribution corrections (overall ADs)
ma_obj_ad_nonpairwise <- ma_r(ma_method = "ad", rxyi = "rxyi", n = "n",
                              rxx = "rxxi", ryy = "ryyi",
                              pairwise_ads = FALSE,
                              correct_rr_x = FALSE, correct_rr_y = FALSE,
                              construct_x = "x_name", construct_y = "y_name",
                              sample_id = "sample_id", moderators = "moderator",
                              data = data_r_meas_multi)
summarize_ads(ma_obj = ma_obj_ad_nonpairwise)


## Artifact distributions from "ma_d" with individual-correction meta-analysis
ma_d_ic <- ma_d(ma_method = "ic", d = d, n1 = n1, n2 = n2, ryy = ryyi,
                construct_y = construct, data = data_d_meas_multi)
summarize_ads(ma_obj = ma_d_ic)
summarize_ads(ma_obj = ma_d_ic$construct_pairs$`Pair ID = 1: X = group1-group2, Y = Y`)

## Artifact distributions from "ma_d" with artifact-distribution meta-analysis
ma_d_ad <- ma_d(ma_method = "ad", d = d, n1 = n1, n2 = n2,
                ryy = ryyi, correct_rr_y = FALSE,
                construct_y = construct, data = data_d_meas_multi)
summarize_ads(ma_obj = ma_d_ad)
summarize_ads(ma_obj = ma_d_ad$construct_pairs$`Pair ID = 1: X = group1-group2, Y = Y`)
# }

Run the code above in your browser using DataLab