Learn R Programming

psychmeta (version 1.0.2)

get_stuff: Estimation of applicant and incumbent reliabilities and of true- and observed-score u ratios

Description

Functions to estimate the values of artifacts from other artifacts. These functions allow for reliability estimates to be corrected/attenuated for range restriction and allow u ratios to be converted between observed-score and true-score metrics. Some functions also allow for the extrapolation of an artifact from other available information.

Available functions include:

  • get_metatab Retrieve list of meta-analytic tables.

  • get_ad Retrieve list of artifact-distribution objects or a summary table of artifact descriptive statistics.

  • get_plots Retrieve list of meta-analytic plots.

  • get_escalc Retrieve list of escalc objects (i.e., effect-size data) for use with metafor.

  • get_metafor Alias for get_escalc.

  • get_followup Retrieve list of follow-up analyses.

  • get_leave1out Retrieve list of leave-one-out meta-analyses (special case of get_followup).

  • get_cumulative Retrieve list of cumulative meta-analyses (special case of get_followup).

  • get_bootstrap Retrieve list of bootstrap meta-analyses (special case of get_followup).

  • get_metareg Retrieve list of meta-regression analyses (special case of get_followup).

  • get_heterogeneity Retrieve list of heterogeneity analyses (special case of get_followup).

Usage

get_metafor(ma_obj, analyses = "all", match = c("all", "any"),
  case_sensitive = TRUE, ...)

get_metatab(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_ad(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, as_ad_obj = FALSE, inputs_only = TRUE, ma_method = c("ad", "ic"), ad_type = c("tsa", "int"), ...)

get_followup(ma_obj, follow_up = c("heterogeneity", "leave1out", "cumulative", "bootstrap", "metareg"), analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_heterogeneity(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_leave1out(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_cumulative(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_bootstrap(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_metareg(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_matrix(ma_obj, analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

get_plots(ma_obj, plot_types = c("funnel", "forest", "leave1out", "cumulative"), analyses = "all", match = c("all", "any"), case_sensitive = TRUE, ...)

Arguments

ma_obj

A psychmeta meta-analysis object.

analyses

Which analyses to extract? Can be either "all" to extract references for all meta-analyses in the object (default) or a list containing one or more of the following arguments:

  • construct: A list or vector of construct names to search for.

  • construct_pair: A list of vectors of construct pairs to search for. (e.g., list(c("X", "Y"), c("X", "Z"))).

  • pair_id: A list or vector of numeric construct Pair IDs.

  • analysis_id: A list or vector of analysis IDs (combinations of moderator levels).

  • k_min: A numeric value specifying the minimum k for extracted meta-analyses.

  • N_minv A numeric value specifying the minimum N for extracted meta-analyses.

match

Should extracted meta-analyses match all (default) or any of the criteria given in analyses?

case_sensitive

Logical scalar that determines whether character values supplied in analyses should be treated as case sensitive (TRUE, default) or not (FALSE).

...

Additional arguments.

as_ad_obj

Logical scalar that determines whether artifact information should be returned as artifact-distribution objects (TRUE) or a summary table of artifact-distribution descriptive statistics (FALSE; default).

inputs_only

Used only if as_ad_obj = TRUE: Logical scalar that determines whether artifact information should be returned as summaries of the raw input values (TRUE; default) or artifact values that have been cross-corrected for range restriction and measurement error (FALSE).

ma_method

Character scalar indicating whether artifact distributions should be retrieved from artifact-distribution meta-analyses ("ad"; default) or from individual-correction meta-analyses ("ic").

ad_type

Used only if ma_method = "ic": Character scalar indicating whether Taylor-series approximation artifact distributions ("tsa") or interactive artifact distributions ("int") should be retrieved.

follow_up

Vector of follow-up analysis names (options are: "heterogeneity", "leave1out", "cumulative", "bootstrap", "metareg").

plot_types

Vector of plot types (options are: "funnel", "forest", "leave1out", "cumulative").

Value

Selected set of results.

Examples

Run this code
# NOT RUN {
## Run meta-analysis:
ma_obj <- ma_r(ma_method = "ic", rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi,
               construct_x = x_name, construct_y = y_name,
               sample_id = sample_id, citekey = NULL,
               moderators = moderator, data = data_r_meas_multi,
               impute_artifacts = FALSE, clean_artifacts = FALSE)
ma_obj <- ma_r_ad(ma_obj, correct_rr_x = FALSE, correct_rr_y = FALSE)

## Run additional analyses:
ma_obj <- heterogeneity(ma_obj)
ma_obj <- sensitivity(ma_obj, bootstrap = FALSE)
ma_obj <- metareg(ma_obj)
ma_obj <- plot_funnel(ma_obj)
ma_obj <- plot_forest(ma_obj)

## Extract selected analyses:
get_metatab(ma_obj)
get_matrix(ma_obj)
get_escalc(ma_obj)
get_cumulative(ma_obj)
get_leave1out(ma_obj)
get_heterogeneity(ma_obj)
get_metareg(ma_obj)
get_plots(ma_obj)
get_ad(ma_obj, ma_method = "ic", as_ad_obj = TRUE)
get_ad(ma_obj, ma_method = "ic", as_ad_obj = FALSE)
# }

Run the code above in your browser using DataLab