Last chance! 50% off unlimited learning
Sale ends in
Functions to estimate the variances corrected for psychometric artifacts. These functions use Taylor series approximations (i.e., the delta method) to estimate the corrected variance of an effect-size distribution.
The available Taylor-series functions include:
estimate_var_tsa_meas
Variance of
estimate_var_tsa_uvdrr
Variance of
estimate_var_tsa_bvdrr
Variance of
estimate_var_tsa_uvirr
Variance of
estimate_var_tsa_bvirr
Variance of
estimate_var_tsa_rb1
Variance of
estimate_var_tsa_rb2
Variance of
estimate_var_tsa_meas(mean_rtp, var = 0, mean_qx = 1, mean_qy = 1,
...)estimate_var_tsa_uvdrr(mean_rtpa, var = 0, mean_ux = 1, mean_qxa = 1,
mean_qyi = 1, ...)
estimate_var_tsa_bvdrr(mean_rtpa, var = 0, mean_ux = 1, mean_uy = 1,
mean_qxa = 1, mean_qya = 1, ...)
estimate_var_tsa_uvirr(mean_rtpa, var = 0, mean_ut = 1, mean_qxa = 1,
mean_qyi = 1, ...)
estimate_var_tsa_bvirr(mean_rtpa, var = 0, mean_ux = 1, mean_uy = 1,
mean_qxa = 1, mean_qya = 1, sign_rxz = 1, sign_ryz = 1, ...)
estimate_var_tsa_rb1(mean_rtpa, var = 0, mean_ux = 1, mean_rxx = 1,
mean_ryy = 1, ...)
estimate_var_tsa_rb2(mean_rtpa, var = 0, mean_ux = 1, mean_qx = 1,
mean_qy = 1, ...)
Mean corrected correlation.
Variance to be corrected for artifacts.
Mean square root of reliability for X.
Mean square root of reliability for Y.
Additional arguments.
Mean corrected correlation.
Mean observed-score u ratio for X.
Mean square root of unrestricted reliability for X.
Mean square root of restricted reliability for Y.
Mean observed-score u ratio for Y.
Mean square root of unrestricted reliability for Y.
Mean true-score u ratio for X.
Sign of the relationship between X and the selection mechanism.
Sign of the relationship between Y and the selection mechanism.
Mean reliability for X.
Mean reliability for Y.
Vector of variances corrected for mean artifacts via Taylor series approximation.
A typographical error in Raju and Burke's article has been corrected in estimate_var_tsa_rb2
so as to compute appropriate partial derivatives.
Dahlke, J. A., & Wiernik, B. M. (2018). One of these artifacts is not like the others: Accounting for indirect range restriction in organizational and psychological research. Manuscript submitted for review.
Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594<U+2013>612. https://doi.org/10.1037/0021-9010.91.3.594
Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. Journal of Applied Psychology, 68(3), 382<U+2013>395. https://doi.org/10.1037/0021-9010.68.3.382
# NOT RUN {
estimate_var_tsa_meas(mean_rtp = .5, var = .02,
mean_qx = .8,
mean_qy = .8)
estimate_var_tsa_uvdrr(mean_rtpa = .5, var = .02,
mean_ux = .8,
mean_qxa = .8,
mean_qyi = .8)
estimate_var_tsa_bvdrr(mean_rtpa = .5, var = .02,
mean_ux = .8,
mean_uy = .8,
mean_qxa = .8,
mean_qya = .8)
estimate_var_tsa_uvirr(mean_rtpa = .5, var = .02,
mean_ut = .8,
mean_qxa = .8,
mean_qyi = .8)
estimate_var_tsa_bvirr(mean_rtpa = .5, var = .02,
mean_ux = .8,
mean_uy = .8,
mean_qxa = .8,
mean_qya = .8,
sign_rxz = 1, sign_ryz = 1)
estimate_var_tsa_rb1(mean_rtpa = .5, var = .02,
mean_ux = .8,
mean_rxx = .8,
mean_ryy = .8)
estimate_var_tsa_rb2(mean_rtpa = .5, var = .02,
mean_ux = .8,
mean_qx = .8,
mean_qy = .8)
# }
Run the code above in your browser using DataLab