Functions to estimate the values of artifacts from other artifacts. These functions allow for reliability estimates to be corrected/attenuated for range restriction and allow u ratios to be converted between observed-score and true-score metrics. Some functions also allow for the extrapolation of an artifact from other available information.
Available functions include:
estimate_rxxa Estimate the applicant reliability of variable X from X's incumbent reliability value and X's observed-score or true-score u ratio.
estimate_rxxa_u Estimate the applicant reliability of variable X from X's observed-score and true-score u ratios.
estimate_rxxi Estimate the incumbent reliability of variable X from X's applicant reliability value and X's observed-score or true-score u ratio.
estimate_rxxi_u Estimate the incumbent reliability of variable X from X's observed-score and true-score u ratios.
estimate_ux Estimate the true-score u ratio for variable X from X's reliability coefficient and X's observed-score u ratio.
estimate_uy Estimate the observed-score u ratio for variable X from X's reliability coefficient and X's true-score u ratio.
estimate_ryya Estimate the applicant reliability of variable Y from Y's incumbent reliability value, Y's correlation with X, and X's u ratio.
estimate_ryyi Estimate the incumbent reliability of variable Y from Y's applicant reliability value, Y's correlation with X, and X's u ratio.
estimate_uy Estimate the observed-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.
estimate_up Estimate the true-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.
estimate_rxxa(rxxi, ux, ux_observed = TRUE, indirect_rr = TRUE,
rxxi_type = "alpha")estimate_rxxi(rxxa, ux, ux_observed = TRUE, indirect_rr = TRUE,
rxxa_type = "alpha")
estimate_ut(ux, rxx, rxx_restricted = TRUE)
estimate_ux(ut, rxx, rxx_restricted = TRUE)
estimate_ryya(ryyi, rxyi, ux)
estimate_ryyi(ryya, rxyi, ux)
estimate_uy(ryyi, ryya, indirect_rr = TRUE, ryy_type = "alpha")
estimate_up(ryyi, ryya)
estimate_rxxa_u(ux, ut)
estimate_rxxi_u(ux, ut)
Vector of incumbent reliability estimates for X.
Vector of observed-score u ratios for X (if used in the context of estimating a reliability value, a true-score u ratio may be supplied by setting ux_observed to FALSE).
Logical vector determining whether each element of ux is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).
Logical vector determining whether each reliability value is associated with indirect range restriction (TRUE) or direct range restriction (FALSE).
String vector identifying the types of reliability estimates supplied (e.g., "alpha", "retest", "interrater_r", "splithalf"). See the documentation for ma_r for a full list of acceptable reliability types.
Vector of applicant reliability estimates for X.
Vector of reliability estimates for X (used in the context of estimating ux and ut - specify that reliability is an incumbent value by setting rxx_restricted to FALSE).
Logical vector determining whether each element of rxx is an incumbent reliability (TRUE) or an applicant reliability (FALSE).
Vector of true-score u ratios for X.
Vector of incumbent reliability estimates for Y.
Vector of observed-score incumbent correlations between X and Y.
Vector of applicant reliability estimates for Y.
A vector of estimated artifact values.
#### Formulas to estimate rxxa ####
Formulas for indirect range restriction: $$\rho_{XX_{a}}=1-u_{X}^{2}\left(1-\rho_{XX_{i}}\right)$$ $$\rho_{XX_{a}}=\frac{\rho_{XX_{i}}}{\rho_{XX_{i}}+u_{T}^{2}-\rho_{XX_{i}}u_{T}^{2}}$$
Formula for direct range restriction: $$\rho_{XX_{a}}=\frac{\rho_{XX_{i}}}{u_{X}^{2}\left[1+\rho_{XX_{i}}\left(\frac{1}{u_{X}^{2}}-1\right)\right]}$$
#### Formulas to estimate rxxi ####
Formulas for indirect range restriction: $$\rho_{XX_{i}}=1-\frac{1-\rho_{XX_{a}}}{u_{X}^{2}}$$ $$\rho_{XX_{i}}=1-\frac{1-\rho_{XX_{a}}}{\rho_{XX_{a}}\left[u_{T}^{2}-\left(1-\frac{1}{\rho_{XX_{a}}}\right)\right]}$$
Formula for direct range restriction: $$\rho_{XX_{i}}=\frac{\rho_{XX_{i}}u_{X}^{2}}{1+\rho_{XX_{i}}\left(u_{X}^{2}-1\right)}$$
#### Formulas to estimate ut ####
$$u_{T}=\sqrt{\frac{\rho_{XX_{i}}u_{X}^{2}}{1+\rho_{XX_{i}}u_{X}^{2}-u_{X}^{2}}}$$ $$u_{T}=\sqrt{\frac{u_{X}^{2}-\left(1-\rho_{XX_{a}}\right)}{\rho_{XX_{a}}}}$$
#### Formulas to estimate ux #### $$u_{X}=\sqrt{\frac{u_{T}^{2}}{\rho_{XX_{i}}\left(1+\frac{u_{T}^{2}}{\rho_{XX_{i}}}-u_{T}^{2}\right)}}$$ $$u_{X}=\sqrt{\rho_{XX_{a}}\left[u_{T}^{2}-\left(1-\frac{1}{\rho_{XX_{a}}}\right)\right]}$$
#### Formula to estimate ryya ####
$$\rho_{YY_{a}}=1-\frac{1-\rho_{YY_{i}}}{1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)}$$
#### Formula to estimate ryyi $$\rho_{YY_{i}}=1-\left(1-\rho_{YY_{a}}\right)\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]$$
#### Formula to estimate uy #### $$u_{Y}=\sqrt{\frac{1-\rho_{YY_{a}}}{1-\rho_{YY_{i}}}}$$
#### Formula to estimate up #### $$u_{P}=\sqrt{\frac{\frac{1-\rho_{YY_{a}}}{1-\rho_{YY_{i}}}-\left(1-\rho_{YY_{a}}\right)}{\rho_{YY_{a}}}}$$
Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg p. 127.
Le, H., & Schmidt, F. L. (2006). Correcting for indirect range restriction in meta-analysis: Testing a new meta-analytic procedure. Psychological Methods, 11(4), 416<U+2013>438. https://doi.org/10.1037/1082-989X.11.4.416
Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594<U+2013>612. https://doi.org/10.1037/0021-9010.91.3.594
Le, H., Oh, I.-S., Schmidt, F. L., & Wooldridge, C. D. (2016). Correction for range restriction in meta-analysis revisited: Improvements and implications for organizational research. Personnel Psychology, 69(4), 975<U+2013>1008. https://doi.org/10.1111/peps.12122
# NOT RUN {
estimate_rxxa(rxxi = .8, ux = .8, ux_observed = TRUE)
estimate_rxxi(rxxa = .8, ux = .8, ux_observed = TRUE)
estimate_ut(ux = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ux(ut = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ryya(ryyi = .8, rxyi = .3, ux = .8)
estimate_ryyi(ryya = .8, rxyi = .3, ux = .8)
estimate_uy(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_up(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_rxxa_u(ux = c(.7, .8), ut = c(.65, .75))
estimate_rxxi_u(ux = c(.7, .8), ut = c(.65, .75))
# }
Run the code above in your browser using DataLab