A class and generic function for representing and extracting the discrimination parameters of a given item response model.
discrpar(object, …)
# S3 method for raschmodel
discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, …)
# S3 method for rsmodel
discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, …)
# S3 method for pcmodel
discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, …)
# S3 method for plmodel
discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, …)
# S3 method for gpcmodel
discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, …)
a fitted model object whose discrimination parameters should be extracted.
a restriction to be used. Not used for models estimated via CML as
the discrimination parameters are fixed to 1 in raschmodel
s,
rsmodel
s and pcmodel
s. For models estimated via MML
(plmodel
s and gpcmodel
s), the parameters are by default
identified via the distributional parameters of the person parameters (mean and
variance of a normal distribution). Nevertheless, a restriction on the ratio
scale can be applied.
logical. If TRUE
(the default), the aliased parameters are
included in the return vector (and in the variance-covariance matrix if
vcov
= TRUE). If FALSE
, these parameters are removed. For
raschmodel
s, rsmodel
s and pcmodel
s where all
discrimination parameters are fixed to 1, this means that an empty
numeric vector and an empty variance-covariance matrix is returned if
alias
is FALSE
.
logical. If TRUE
(the default), the variance-covariance
matrix of the discrimination parameters is attached as attribute
vcov
.
further arguments which are currently not used.
A named vector with discrimination parameters of class discrpar
and
additional attributes model
(the model name), ref
(the items or
parameters used as restriction/for normalization), alias
(either
TRUE
or a named numeric vector with the aliased parameters not included
in the return value), and vcov
(the estimated and adjusted
variance-covariance matrix).
discrpar
is both, a class to represent discrimination parameters of
item response models as well as a generic function. The generic function can
be used to extract the discrimination parameters of a given item response
model.
For objects of class discrpar
, several methods to standard generic
functions exist: print
, coef
, vcov
. coef
and
vcov
can be used to extract the discrimination parameters and their
variance-covariance matrix without additional attributes.
# NOT RUN {
o <- options(digits = 4)
## load verbal aggression data
data("VerbalAggression", package = "psychotools")
## fit Rasch model to verbal aggression data
rmod <- raschmodel(VerbalAggression$resp2)
## extract the discrimination parameters
dp1 <- discrpar(rmod)
## extract the standard errors
sqrt(diag(vcov(dp1)))
if(requireNamespace("mirt")) {
## fit 2PL to verbal aggression data
twoplmod <- plmodel(VerbalAggression$resp2)
## extract the discrimination parameters
dp2 <- discrpar(twoplmod)
## this time with the first discrimination parameter being the reference
discrpar(twoplmod, ref = 1)
## extract the standard errors
sqrt(diag(vcov(dp2)))
}
options(digits = o$digits)
# }
Run the code above in your browser using DataLab