# NOT RUN {
m1 <- Sldax(ndocs = 1, nvocab = 2,
topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
est_beta(m1, stat = "mean")
est_beta(m1, stat = "median")
m1 <- Sldax(ndocs = 2, nvocab = 2, nchain = 2,
topics = array(c(1, 2, 2, 1,
1, 2, 2, 1), dim = c(2, 2, 2)),
theta = array(c(0.5, 0.5,
0.5, 0.5,
0.5, 0.5,
0.5, 0.5), dim = c(2, 2, 2)),
loglike = rep(NaN, times = 2),
logpost = rep(NaN, times = 2),
lpd = matrix(NaN, nrow = 2, ncol = 2),
eta = matrix(0.0, nrow = 2, ncol = 2),
mu0 = c(0.0, 0.0),
sigma0 = diag(1, 2),
eta_start = c(0.0, 0.0),
beta = array(c(0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 2)))
est_theta(m1, stat = "mean")
est_theta(m1, stat = "median")
mdoc <- matrix(c(1, 2, 2, 1), nrow = 1)
m1 <- Sldax(ndocs = 1, nvocab = 2,
topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_coherence(bhat, docs = mdoc, nwords = nvocab(m1))
m1 <- Sldax(ndocs = 1, nvocab = 2,
topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_exclusivity(bhat, nwords = nvocab(m1))
m1 <- Sldax(ndocs = 2, nvocab = 2, nchain = 2,
topics = array(c(1, 2, 2, 1,
1, 2, 2, 1), dim = c(2, 2, 2)),
theta = array(c(0.4, 0.3,
0.6, 0.7,
0.45, 0.5,
0.55, 0.5), dim = c(2, 2, 2)),
loglike = rep(NaN, times = 2),
logpost = rep(NaN, times = 2),
lpd = matrix(NaN, nrow = 2, ncol = 2),
eta = matrix(0.0, nrow = 2, ncol = 2),
mu0 = c(0.0, 0.0),
sigma0 = diag(1, 2),
eta_start = c(0.0, 0.0),
beta = array(c(0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 2)))
t_hat <- est_theta(m1, stat = "mean")
get_toptopics(t_hat, ntopics = ntopics(m1))
m1 <- Sldax(ndocs = 1, nvocab = 2,
topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_topwords(bhat, nwords = nvocab(m1), method = "termscore")
get_topwords(bhat, nwords = nvocab(m1), method = "prob")
m1 <- Sldax(ndocs = 1, nvocab = 2,
topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
get_zbar(m1)
data(mtcars)
m1 <- gibbs_mlr(mpg ~ hp, data = mtcars, m = 2)
post_regression(m1)
# }
# NOT RUN {
library(lda) # Required if using `prep_docs()`
data(teacher_rate) # Synthetic student ratings of instructors
docs_vocab <- prep_docs(teacher_rate, "doc")
vocab_len <- length(docs_vocab$vocab)
m1 <- gibbs_sldax(rating ~ I(grade - 1), m = 2,
data = teacher_rate,
docs = docs_vocab$documents,
V = vocab_len,
K = 2,
model = "sldax")
gg_coef(m1)
# }
Run the code above in your browser using DataLab