asysm: Trend estimation with asymmetric least squares
Description
Estimates a trend based on asymmetric least squares. In
this case used to estimate the baseline of a given spectrum.
Usage
asysm(y, lambda = 1e+07, p = 0.001, eps = 1e-8)
Arguments
y
data: either a vector or a data matrix containing spectra as rows
lambda
smoothing parameter (generally 1e5 - 1e8)
p
asymmetry parameter
eps
numerical precision for convergence
Value
An estimated baseline
Details
Asymmetric least squares (not to be confused with alternating
least squares) assigns different weights to the data points that are
above and below an iteratively estimated trendline, respectively. In
this case, the asymmetry parameter p (0
References
Eilers, P.H.C.
Eilers, P.H.C. (2004) "Parametric Time Warping", Analytical Chemistry, 76 (2), 404 -- 411.
Boelens, H.F.M., Eilers, P.H.C., Hankemeier, T. (2005) "Sign constraints improve the detection of differences between complex spectral data sets: LC-IR as an example", Analytical Chemistry, 77, 7998 -- 8007.