Learn R Programming

ptw (version 1.0-7)

asysm: Trend estimation with asymmetric least squares

Description

Estimates a trend based on asymmetric least squares. In this case used to estimate the baseline of a given spectrum.

Usage

asysm(y, lambda = 1e+07, p = 0.001, eps = 1e-8)

Arguments

y
data: either a vector or a data matrix containing spectra as rows
lambda
smoothing parameter (generally 1e5 - 1e8)
p
asymmetry parameter
eps
numerical precision for convergence

Value

  • An estimated baseline

Details

Asymmetric least squares (not to be confused with alternating least squares) assigns different weights to the data points that are above and below an iteratively estimated trendline, respectively. In this case, the asymmetry parameter p (0

References

Eilers, P.H.C. Eilers, P.H.C. (2004) "Parametric Time Warping", Analytical Chemistry, 76 (2), 404 -- 411. Boelens, H.F.M., Eilers, P.H.C., Hankemeier, T. (2005) "Sign constraints improve the detection of differences between complex spectral data sets: LC-IR as an example", Analytical Chemistry, 77, 7998 -- 8007.

Examples

Run this code
data(gaschrom)
plot(gaschrom[1,], type = "l", ylim = c(0, 100))
lines(asysm(gaschrom[1,]), col = 2)

Run the code above in your browser using DataLab