Learn R Programming

pumBayes (version 1.0.2)

sample_pum_dynamic: Generate posterior samples from the dynamic probit unfolding model

Description

This function generates posterior samples for all parameters based on the dynamic probit unfolding model.

Usage

sample_pum_dynamic(
  vote_info,
  years_v,
  hyperparams,
  control,
  sign_refs,
  verbose = FALSE,
  pre_run = NULL,
  appended = FALSE
)

Value

A list containing: - `beta`: A data frame of posterior samples for beta. - `alpha1`: A data frame of posterior samples for alpha1. - `alpha2`: A data frame of posterior samples for alpha2. - `delta1`: A data frame of posterior samples for delta1. - `delta2`: A data frame of posterior samples for delta2. - `rho`: A data frame of posterior samples for rho.

Arguments

vote_info

A logical vote matrix where rows represent members and columns represent issues. The entries should be FALSE ("No"), TRUE ("Yes"), or NA (missing data).

years_v

A vector representing the time period for each vote in the model.

hyperparams

A list of hyperparameter values including: - `beta_mean`: Prior mean of beta. - `beta_var`: Prior variance of beta. - `alpha_mean`: A vector of 2 values for the prior means of alpha1 and alpha2. - `alpha_scale`: Scale parameter for alpha1 and alpha2. - `delta_mean`: A vector of 2 values for the prior means of delta1 and delta2. - `delta_scale`: Scale parameter for delta1 and delta2. - `rho_mean`: Prior mean of the autocorrelation parameter `rho`. - `rho_sigma`: Standard deviation of the prior for `rho`.

control

A list specifying the MCMC configurations, including: - `num_iter`: Total number of iterations. - `burn_in`: The number of initial iterations to discard as part of the burn-in period before retaining samples. - `keep_iter`: Interval at which samples are retained. - `flip_rate`: Probability of directly flipping signs in the M-H step, rather than resampling from the priors. - `sd_prop_rho`: Proposal standard deviation for `rho` in the Metropolis-Hastings step.

sign_refs

A list containing sign constraints, including: - `pos_inds`: Indices of members constrained to have positive values. - `neg_inds`: Indices of members constrained to have negative values. - `pos_year_inds`: List of years corresponding to each `pos_ind`. - `neg_year_inds`: List of years corresponding to each `neg_ind`.

verbose

Logical. If `TRUE`, prints progress and additional information during the sampling process.

pre_run

A list containing the output from a previous run of the function. If provided, the last iteration of the previous run will be used as the initial point of the new run. Defaults to `NULL`.

appended

Logical. If `TRUE`, the new samples will be appended to the samples from the previous run. Defaults to `FALSE`.

Examples

Run this code
# \donttest{
# Long-running example
data(scotus.1937.2021)
hyperparams = list(alpha_mean = c(0, 0), alpha_scale = 5,
                   delta_mean = c(-2, 10), delta_scale = sqrt(10),
                   rho_mean = 0.9, rho_sigma = 0.04)
control = list(num_iter = 2, burn_in = 0, keep_iter = 1, flip_rate = 0.1, sd_prop_rho = 0.1)
sign_refs = list(pos_inds = c(39, 5), neg_inds = c(12, 29),
                 pos_year_inds = list(1:31, 1), neg_year_inds = list(1:29, 1:24))
scotus.pum = sample_pum_dynamic(mqVotes, mqTime, hyperparams, control, sign_refs,
                                verbose = FALSE, pre_run = NULL, appended = FALSE)
# }

Run the code above in your browser using DataLab