pumaDE
.
calculateFC(
eset
, design.matrix = createDesignMatrix(eset)
, contrast.matrix = createContrastMatrix(eset)
)
ExpressionSet
DEResult
.
eset
argument must be supplied, and must be a valid ExpressionSet
object. Design and contrast matrices can be supplied, but if not, default matrices will be used. These should usually be sufficient for most analyses.
pumaDE
, calculateLimma
, calculateTtest
, createDesignMatrix
and createContrastMatrix
and class DEResult
if (require(affydata)) {
data(Dilution)
eset_rma <- affy:::rma(Dilution)
# Next line used so eset_rma only has information about the liver factor
# The scanner factor will thus be ignored, and the two arrays of each level
# of the liver factor will be treated as replicates
pData(eset_rma) <- pData(eset_rma)[,1, drop=FALSE]
FCRes <- calculateFC(eset_rma)
topGeneIDs(FCRes,numberOfGenes=6)
plotErrorBars(eset_rma, topGenes(FCRes))
}
Run the code above in your browser using DataLab