### replicate Herwartz,Wang 2024:630, Ch.4 ###
# \donttest{
# select minimal or full example #
is_min = TRUE
n.boot = ifelse(is_min, 5, 1000)
idx_i = ifelse(is_min, 1, 1:14)
# load and prepare data #
data("EURO")
names_i = names(EURO[idx_i+1]) # country names (#1 is EA-wide aggregated data)
names_s = paste0("epsilon[ ", c(1:2, "m", "f"), " ]") # shock names
idx_k = 1:4 # endogenous variables in individual data matrices
idx_t = 1:(nrow(EURO[[1]])-1) # periods from 2001Q1 to 2019Q4
trend2 = idx_t^2
# panel SVARX model, Ch.4.1 #
L.data = lapply(EURO[idx_i+1], FUN=function(x) x[idx_t, idx_k])
L.exog = lapply(EURO[idx_i+1], FUN=function(x) cbind(trend2, x[idx_t, 5:10]))
R.lags = c(1,2,1,2,2,2,2,2,1,2,2,2,2,1)[idx_i]; names(R.lags) = names_i
R.pvar = pvarx.VAR(L.data, lags=R.lags, type="both", D=L.exog)
R.pid = pid.dc(R.pvar, combine="pool")
print(R.pid) # suggests e3 and e4 to be MP and financial shocks, respectively.
colnames(R.pid$B) = names_s # accordant labeling
# EA-wide SVARX model, Ch.4.2 #
R.data = EURO[[1]][idx_t, idx_k]
R.exog = cbind(trend2, EURO[[1]][idx_t, 5:6])
R.varx = pvarx.VAR(list(EA=R.data), lags=2, type="both", D=list(EA=R.exog))
R.id = pid.dc(R.varx, combine="indiv")$L.varx$EA
colnames(R.id$B) = names_s # labeling
# comparison of IRF without confidence bands, Ch.4.3.1 #
data("EU_w") # GDP weights with the same ordering names_i as L.varx in R.pid
R.norm = function(B) B / matrix(diag(B), nrow(B), ncol(B), byrow=TRUE) * 25
R.irf = as.pplot(
EA=plot(irf(R.id, normf=R.norm), selection=list(idx_k, 3:4)),
MG=plot(irf(R.pid, normf=R.norm, w=EU_w), selection=list(idx_k, 3:4)),
color_g=c("#3B4992FF", "#008B45FF"), shape_g=16:17, n.rows=length(idx_k))
plot(R.irf)
# comparison of IRF with confidence bands, Ch.4.3.1 #
R.boot_EA = sboot.mb(R.id, b.length=8, n.boot=n.boot, n.cores=2, normf=R.norm)
R.boot_MG = sboot.pmb(R.pid, b.dim=c(8, FALSE), n.boot=n.boot, n.cores=2,
normf=R.norm, w=EU_w)
R.irf = as.pplot(
EA=plot(R.boot_EA, lowerq=0.16, upperq=0.84, selection=list(idx_k, 3:4)),
MG=plot(R.boot_MG, lowerq=0.16, upperq=0.84, selection=list(idx_k, 3:4)),
color_g=c("#3B4992FF", "#008B45FF"), shape_g=16:17, n.rows=length(idx_k))
plot(R.irf)
# }
Run the code above in your browser using DataLab